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SUMMARY 

 

 A recent development in the design of control system for a jet engine is to use a 

suitable, fast and accurate model running on board. Development of linear models is 

particularly important as most engine control designs are based on linear control theory. 

Engine control performance can be significantly improved by increasing the accuracy of 

the developed model. Current state-of-the-art is to use piecewise linear models at selected 

equilibrium conditions for the development of set point controllers, followed by 

scheduling of resulting controller gains as a function of one or more of the system states. 

However, arriving at an effective gain scheduler that can accommodate fast transients 

covering a wide range of operating points can become quite complex and involved, thus 

resulting in a sacrifice on controller performance for its simplicity.  

 This thesis presents a methodology for developing a control oriented analytical 

linear model of a jet engine at both equilibrium and off-equilibrium conditions. This 

scheme requires a nonlinear engine model to run onboard in real time. The off-

equilibrium analytical linear model provides improved accuracy and flexibility over the 

commonly used piecewise linear models developed using numerical perturbations. Linear 

coefficients are obtained by evaluating, at current conditions, analytical expressions 

which result from differentiation of simplified nonlinear expressions. Residualization of 

the fast dynamics states are utilized since the fast dynamics are typically outside of the 

primary control bandwidth. Analytical expressions based on the physics of the 

aerothermodynamic processes of a gas turbine engine facilitate a systematic approach to 

the analysis and synthesis of model based controllers. In addition, the use of analytical 

expressions reduces the computational effort, enabling linearization in real time at both 
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equilibrium and off-equilibrium conditions for a more accurate capture of system 

dynamics during aggressive transient maneuvers.  

The methodology is formulated and applied to a separate flow twin-spool 

turbofan engine model in the Numerical Propulsion System Simulation (NPSS) platform. 

The fidelity of linear model is examined by validating against a detailed nonlinear engine 

model using time domain response, the normalized additive uncertainty and the -gap 

metric. The effects of each simplifying assumptions, which are crucial to the linear model 

development, on the fidelity of the linear model are analyzed in detail. A case study is 

performed to investigate the case when the current state (including both slow and fast 

states) of the system is not readily available from the nonlinear simulation model. Also, a 

simple model based control is used to illustrate benefits of using the proposed modeling 

approach. 
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CHAPTER 1 

INTRODUCTION 

 

 

 The operation of a jet engine is complex as it involves a combination of 

aerodynamic, thermodynamic, chemical and mechanical processes [37]. A control system 

is essential to delivering the appropriate input for achieving the desired thrust level of a 

jet engine for proper operation. The control system of a jet engine serves two main 

functions: power management and protection logic [8,20,37]. First, a control system is 

required to maintain “consistent and stable thrust levels” during steady state engine 

operation and to provide “smooth and repeatable performance” during transient 

operation[8,20,37]. Second, a control system must ensure safe engine operation by 

keeping shaft speeds, temperatures, and pressures within allowable operating 

limits[8,20,37,51]. Because engine performance is highest near hardware operational 

limits such as those on turbine temperature, shaft speed and compressor pressure ratio 

[51] as shown in Figure 1.1, a trade-off exists between achieving desired performance 

and maintaining operability margins for safety and reliability. In addition, a wide 

operating envelope, shown in Figure 1.2, makes control system synthesis difficult.  

 The engine control system has evolved greatly from simple metering of fuel to the 

combustor at the proper fuel-to-air ratio to achieving more challenging objectives such as 

higher thrust-to-weight ratios and improving specific fuel consumption [39]. Potential 

benefit of using an advanced engine control system includes expanding engine operation 

envelope by reducing conservative built-in margins for operation limits using more 

accurate prediction of engine performance.  
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Figure 1.1 Engine operating limits [13] 

 

 

 

 

Figure 1.2 Jet engine operational range [20] 
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 Jaw and Garg [21] present a comprehensive coverage of the advancement of 

control technology for aircraft gas turbine engines in the United States. Some of key 

milestone are described here. In the early days of the jet engine, before the 1950s, a 

simple controller that regulated fuel flow in proportion to the difference between the set 

speed and the actual speed was designed using classical frequency domain techniques and 

time-domain step response analysis method [21]. In this era, the modeling capability was 

limited as a slide rule or desk calculator was used to compute the conditions for an engine 

operating point[21]. The steady-state performance was calculated using performance 

maps, constant gas properties and an iterative process for balancing internal engine flow 

and energy transfers.[21]. 

 The first computerized steady-state engine performance model was developed in 

1953 and by the mid-60s, 90 percent of dynamic performance analysis was achieved 

using computers[21]. Frequency response methods using the gain and the phase margin 

as leading parameters for closed-loop system stability were used for control design in this 

era [21].  

 Engine control systems routinely incorporated engine models in the design 

process by the early 1970s [21]. Also, the research on multivariable control design for the 

gas turbine engine became active around the mid-1970s[21,39]. Multivariable control 

emphasizes the use of state space representation in control design [30]. This allows for a 

more systematic way of designing controllers in comparison to the classical single-input 

single-output (SISO) proportional-integral-derivative (PID) control approach when 

applied to complex systems [39]. A recent development in the design of control systems 

is to use a suitable, fast and accurate model running onboard as part of the control loop. 

Such a real-time model can provide estimates of the unmeasured outputs which may be 

used in control algorithms [9,43]. As an example, engine thrust is typically not a directly 

measurable parameter but may be estimated using an onboard model. In general, any 
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control approach that utilizes a model as part of the control loop is known as model based 

control. Tagashira et al [54] discuss the development and the test of a model based 

control for a single spool turbojet engine. Mahmood et al [34] have applied the inverse 

model control to a three-spool gas turbine simulation model and have shown improved 

performance over results using classical gain scheduled control. Turevskiy et al [55] 

discuss the development of the model based control system for a large scale turbofan 

engine using a real-time engine model. A popular subclass of model based control is 

model predictive control, where an onboard, faster than real-time model is used for short 

horizon prediction. This enables prediction of limit boundary violation and hence can be 

used to obtain constrained locally optimal control update laws. Several research efforts 

have investigated the different aspects of model predictive control [4,12,46,57].   

 A robust engine model, capable of running at least in real-time, is a basic 

requirement of model based control. Since the accuracy and performance of model based 

control laws are dependent on the engine model, it follows that developing accurate 

models is the first step in any such effort. Further, as the model based control laws are 

continually updated, the requirement to capture global behavior of the system can be 

relaxed as long as locally accurate models can be efficiently obtained.  

 A detailed model of the engine is usually developed to simulate the engine 

behavior across the entire operating envelope [13,23,49]. This model can also serve as the 

basis of simpler, faster models targeted at control. Control oriented engine modeling 

methods can be broadly classified into two categories: physics based models and data-

driven black box models. Typically, a physics based approach directly models the inter-

component aero-thermal properties as well as shaft dynamics while employing a 

map/look-up table type representation of the components. A black-box approach may 

attempt to derive arbitrary mathematical functional relationships between input and 

output data, where the data is either obtained experimentally or via simulation. Examples 
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of this approach include neural network based engine models and support vector machine 

(SVM) based engine models. In practice, a control and/or health monitoring engine 

model may mix the two approaches. Traditional on-board models have more emphasis on 

physics based part with a limited number of correlation parameters derived from test data 

to fill any missing information [11,24]. However, there is an increasing focus on hybrid 

approaches that incorporate neural networks to augment a state-space, physics based 

model [50,61]. The chief motivation is to improve the accuracy while minimizing 

computational costs.  

 Linear models have been used widely in the design and analysis of control 

algorithms for gas turbine engines [25]. Although, jet engines are significantly nonlinear 

in full operation range, the small signal response near a nominal operating point of an 

engine can be well represented by a linear model. The use of such linear models enables 

the use of well-established approaches for the synthesis and analysis of control laws and 

estimators, simplifying the control design process. Thus, derivation of an accurate linear 

engine model is crucial for successful engine control. 

 In the next section, different control oriented engine modeling approaches are 

surveyed. The first part focuses on nonlinear engine models developed for engine control. 

The second part focuses on the linearization methods of nonlinear engine models. 

 

1.1 Literature Review 

1.1.1 Real Time Nonlinear Engine Models 

 

 Performance-based detailed engine models often utilize pressure and temperature 

dynamics to simulate engine performance [49]. These models based on the 
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intercomponent volume method require a small integration time step as a large 

integration time step causes inaccurate and/or unstable transient response for the stiff 

system [47]. High stiffness makes these models computationally expensive to run in real 

time. Control oriented detailed engine models are often based on the reduced order 

dynamic states as pressure and temperature dynamics are outside the interested frequency 

range [13]. In these reduced order models, the solver convergence is achieved by forcing 

continuity of the mass flow rate at each component level. Solver tolerance determines the 

convergence accuracy and the number of iterations. In addition to the number of dynamic 

states and solver tolerance, accuracy of the model depends on the level of simplifications 

related to the thermodynamic properties [9]  

 An engine model has become the integral part of the control architecture as the 

engine control has been moving from the classical PID control to the model based control 

as described in the previous section. Engine operation spans a considerable range and 

having a model that runs in real time enables model based control by providing an 

accurate model at the particular operating conditions. Some modifications to the detailed 

engine model are essential for achieving real-time capability. The requirement of real-

time models has been relaxed and a more accurate model can run onboard as a result of 

rapid advancement of processor capability. The following research efforts have been 

made to add real-time run capability to existing detailed engine models.  

 Sanghi et al [47] developed a real-time engine model that is based on the explicit 

time-integrated, aerothermodynamic transient model of a twin-spool, mixed-flow 

turbofan engine based on state variables and control volume approaches. The original 

intercomponent based model is generally not suitable for real-time model because a small 

integration time step of 0.1 ms is required to produce stable system for stiff jet engine. 

Sanghi et al reduced the number of states from nine to six by enforcing the main mixer to 

be a static component. With this assumption, the frame time could be increased to 0.4 ms 
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with actual control volumes and up to 1.2 ms with the time scaling of control volume 

methods. The model was validated against the baseline model. Although rapid 

development of the processor industry has relaxed computational cost constraints 

tremendously, there is still restriction on the frame rate. Expansion in the number of 

dynamic states in high frequency should be accompanied by reduction in frame rate to 

improve model accuracy without suffering instability. 

 Camporeale et al [5] developed a high fidelity modular code for real-time 

dynamic simulation of a gas turbine engine in the Simulink environment. Comporelae et 

al modeled each component using aerothermodynamics of the fluid properties. No 

iteration was required at the component level. Compressor and turbine were modeled as 

volumeless elements and a volume capacity was introduced between these elements in 

order to account for the unsteady mass balance. Shaft dynamics, actuators dynamics and 

transducer dynamics were implemented. Algebraic expressions were arranged to obtain 

the solution using forward substitution. A sequential solving technique was used where 

each parameter was calculated as an explicit function of known quantities, getting rid of 

iteration.  

 Martin et al [35] presented the development and validation of a civil aircraft 

engine simulation for advanced controller design. They developed a direct non-iterative 

model based on intercomponent volume approach similar to the model developed by 

Comporeale et al. Their model was characterized by modularity of each component and 

the adherence to underlying physics. Empirical approximation was minimized to increase 

flexibility of the model and to provide physical justifications. They represented gas 

properties with polynomial fits in order to increase the accuracy of the model. Detailed 

description of the model and the controller is provided in the paper. The model included 

41 states incorporating shaft dynamics, heat soak dynamics and volume dynamics.  
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 Rahman and Whidborne [44] presented a real-time engine model based on a 

hybrid approach of the iterative method and the intercomponent volume technique. They 

calculated compressor/turbine mass flows and efficiencies using static maps. An iterative 

approach was applied at each engine subsystem to solve algebraic thermodynamic 

equations for exit enthalpy, entropy, and temperature. This iteration method for solving 

thermodynamic properties improved the simulation accuracy over methods using the 

standard relationship shown in equation (1.1) which assumes calorically perfect gas with 

the constant specific heat parameter. 


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The intercomponent volume method was used to calculate pressure derivatives, and 

hence, pressure at corresponding engine stations. Simulation results exhibited significant 

improvement of the hybrid model over the pure intercomponent volume technique 

without iteration when compared to a more accurate non real-time engine model. This 

model has a potential to run in real time with careful selection of the component volumes 

and simulation step time.  

 All models described above belong to the category of physics based 

aerothermodynamic models. The data driven engine models which are trained using 

either actual engine measurements or a detailed engine model are described next.  

 Venturini [58] presented simulation of compressor transients using recurrent 

neural network models. He investigated a self-adapting model capable of reproducing 

time-dependent data with high computational speed. Recurrent neural networks utilize 

the memory process in order to take time dependent data characteristics. Venturini 

modeled a compressor using recurrent neural networks with one feedback loop in the 

recursive computational structure. He examined effects of the number of neurons, length 
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of time delay, and number of outputs on the output accuracy using root mean square 

error. He validated the model output against the physics based model as well as actual 

experimental data. Unfortunately, the neural networks were trained using data from the 

physics based model; thus, results were always worse than that of the physics based 

model. Different results may be expected if the model is trained against actual 

measurements. In addition, this paper only presented the neural network model for a 

compressor. Although the approach can be extended to an entire engine, its complexity 

may grow exponentially with larger number of inputs and outputs. Also, selection of the 

correct inputs and outputs are vital in the neural network approach. Finally, whereas the 

self-adapting approach seems attractive, certifiability becomes an issue.  

 Rezvani et al [45] established the engine transient modeling methodology based 

on a neural network without use of a recurrent approach. Details of selecting a proper 

training data set were discussed. A training data set was selected based on a random ramp 

input within the feasible input range. Model output resulted in a good match with that of 

the truth model.  

 Neural network based models will exhibit notable accuracy within a trained 

operating range, but may diverge from actual engine responses outside the trained range. 

The data driven dynamic model that covers the entire operation range is still at the 

experimental stage because of shortcomings, including unknown behaviors in the case of 

extrapolation and lack of physical insights, makes it vulnerable for control application. In 

the control applications, the failure to predict the system dynamics within reasonable 

range may result in a catastrophic failure of an engine. The use of a data driven model is 

more versatile in health management where the failure to predict the system dynamics is 

less catastrophic. 

 Any of modeling approaches examined in this section can serve as a basis for the 

linear model development. Further approximations of thermodynamic properties may be 
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required on some of the physics based models described above for achieving real-time 

linearization. The number of simplifying assumptions should be minimized to achieve 

linearization accuracy while satisfying computational requirement. Neural network based 

models can be directly linearized using simple differentiation of the basis function. 

1.1.2 Linear Engine Models 

 Development of an accurate linear engine model is crucial to successful engine 

control as most multivariable control methods utilized for engine control systems are 

based on linear control theory. There are a few different approaches to linearization of an 

engine model. The most common/researched approach is derivation of linear coefficients 

using numerical schemes based on small input and state perturbations. Since the engine 

model is highly nonlinear in its nature, the common practice is to schedule multiple linear 

models developed at different operating conditions. 

 Seldner and Cwynar [48] presented a detailed procedure for generating linear 

models of a turbofan engine. Linearization based on classical Taylor’s series expansion 

about the nominal operating condition was achieved using the numerical perturbation 

method. The proposed scheme was implemented on the F100 engine and linear responses 

were compared with nonlinear responses in simulations. Some steady-state error was 

observed in the simulation. In addition, a detailed procedure of reducing the full order 

state of 16 to reduced order of 7 was outlined. Simulation results demonstrated agreement 

between the reduced order model and the full order model. The developed linear model is 

only valid for small disturbances about a steady-state operating point. Seldner and 

Cwynar commented that several linear models are required at different operating 

conditions; however, no detailed procedure is outlined regarding interpolation of different 

linear models. 
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 Sugiyama [53] derived linear matrices from a nonlinear dynamic simulation using 

numerical perturbation techniques similar to the method of Seldner and Cwynar. An 

optimal perturbation size and a numerical scheme were selected based on simulation 

results of experimenting with various numerical schemes and different perturbation sizes. 

The numerical scheme was applied at equilibrium condition. Simulation results inferred a 

five point Lagrange formula with 0.5% perturbation size to be optimal. A different engine 

may require a different perturbation size and a numerical scheme for optimality. 

Sugiyama expanded the linearization approach to cover different atmospheric conditions 

by redefining dynamics in the corrected space. Each linear coefficient was re-derived by 

correcting with temperature and pressure ratio. Whole corrected elements of system 

matrices became function of corrected control variables and flight Mach number.  

 Kim et al [24] presented a real-time engine model for a three-spool turbofan 

engine which combines two different models at different operating regimes for improving 

accuracy. Both models were based on aerothermodynamic engine models, one developed 

for idle to max power range and the other one developed at sub-idle regime. Again, the 

model was linearized using the small perturbation scheme. Variable perturbation sizes 

using fuzzy logic in sub-idle regime were introduced to prevent solver convergence issue. 

A partial derivative of each parameter from the nonlinear model was fine-tuned by 

comparison with a steady-state value of each parameter and integrated partial derivatives 

were compared with a steady-state value. When differences were observed, adjustment of 

each integrated partial derivative was made according to relative weight of each 

integrated partial derivative contribution to the whole. Two data sets from two different 

models were merged in smooth fashion. In order to cope with nonlinearity of engine 

dynamics over entire flight spectrum, a piecewise linear modeling approach, utilizing 

rotational speed of high pressure shaft, N3, and Mach number for the interpolation, was 

adapted. 
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 Linear models by Seldner and Cwynar, Sugiyama, and Kim et al adequately 

capture system dynamics near the operating condition where linear sensitivities are 

developed; however, deviation from the actual dynamics is unavoidable away from such 

operating conditions. Piecewise linear models, which are developed by interpolating 

linear models at selected steady-state conditions, are commonly used to cover different 

power levels. Scheduling of the liner models is key to achieving the desired accuracy. 

These piecewise linear models are often used in combination with a gain scheduling 

controller[42]. However, the linear responses deviate from the nonlinear responses when 

the system becomes highly nonlinear with respect to fuel flow, dynamics states, and 

different operating conditions during large transient operations even if an optimum 

scheduling is achieved. The following studies were conducted to improve accuracy 

during transient operations.  

 Lichtsinder and Levy [28] developed a real-time quasilinear model using a 

generalized describing function that can be used during aggressive transient operations. 

The main objective of Lichtsinder and Levy was to overcome disadvantages of the 

traditional linear and piecewise linear model during fast changes of fuel input command 

signal in a large transient. A linear model developed around an operating point does not 

provide adequate information in an aggressive transient operation. Engine dynamics were 

represented by a combination of some initial condition dynamics and the variance in the 

dynamic state from that arbitrary operating condition. They used generalized describing 

functions to determine linear sensitivity matrices. Inputs were generalized using quasi-

polynomial expressions and outputs were approximated by quasi-polynomial expressions. 

Errors between the actual output and an assumed output were used to derive optimal time 

constant and gain for each dynamic equation. This model provided maximal accuracy for 

the largest variance of fuel flow input for different Mach number and altitude operating 

conditions. The key in the approach was to assume that the fuel flow input function of the 

open loop engine is known. Gains and time constants were computed for the maximal 
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variance of a closed loop input (from idle to maximal power level) at each combination 

of Mach number and altitude operating condition. When an input signal differed from the 

maximal signal used for the fast model design, model accuracy deteriorated. The danger 

for stall is minimal when fuel flow input command is significantly less than the 

maximum; thus, reduced accuracy is tolerable. The main objective of the model of 

avoiding the most dangerous situation during a large transient was met. The model 

offered a simple linear real-time model that can be used for large transient operation; 

however, the authors noted that it may become complicated to develop precise real-time 

engine simulations with full-envelope coverage for all possible inputs.  

 Shankar and Yedavalli [50] presented a parameter estimation model utilizing a 

neural-network based observer that augments a linear Kalman filter to compensate for 

accounted nonlinearity. The neural network utilized a radial basis function and was 

trained offline using simulation data. The basis linear model was obtained using 

traditional small perturbation techniques at each operating condition. Results indicated 

accurate prediction of steady-state values but transient responses exhibited comparatively 

larger error. Shankar and Yedavalli claimed that transient response characteristics could 

be improved with the redesign of a gain matrix. Unfortunately, the modeling approach is 

highly dependent on a training data set and parameters used in the algorithm. Shankar 

and Yedavalli stated that the neural network has to be trained not only at different flight 

conditions, but also at different deterioration levels. Design of the sample space itself 

requires more in-depth research which was in part discussed by Rezvani et al [45]  

 Volponi [61] presented a hybrid engine model that integrates a physics based state 

variable linear model with an empirical neural network to improve model accuracy. The 

model was developed for tracking engine health performance. A piecewise linear model 

was augmented with both a Kalman filter for tuning engine model error and a neural 

network to capture any unmodeled engine dynamics. Training of the neural network was 
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carried onboard in non-real time using different networks at different flight envelops. 

Volponi also discussed details of real-time code development. The hybrid modeling 

approach utilized the advantages of both physics based models and neural network 

models. The difficulty with scheduling of linear models at different operating condition 

was still an issue. Also, for a control application, training and validation of the neural 

network becomes more difficult since changes in engine dynamics need to be captured in 

real time. The hybrid modeling approach, while promising, remains problematic.  

 These efforts to achieve more accurate engine models have been made to answer 

the following continuously sought research question: 

How can a linear model accurately capture the engine dynamics during 

transient operation?  

This thesis focuses on finding more dependable answers to the above question to progress 

one step forward in the advancement of an engine control system. 

 

1.2 Objectives 

 The effort to capture dynamics far away from equilibrium points using sets of 

linear models have been made continuously by many control engineers in different areas 

[22,27,40]. Johansen et al [22] tried to capture transient operations by including a set of 

off-equilibrium linear models in addition to linear models developed at equilibrium to 

improve the accuracy. Murray et al [40] enhanced the work of Johansen et al by 

introducing nonparametric Gaussian process to provide better local models for blending. 

Leith and Leithead[27] have developed a family of velocity-based linearization which is 

valid in vicinity of any operating point. The gas turbine engine can also benefit from off-

equilibrium linearization that accurately captures the dynamics of engine away from 

equilibrium conditions as discussed in the previous section. In addition, the improvement 
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can be made to existing gas turbine model based control synthesis if an accurate linear 

model that is independent of selection of scheduling parameters and training set can be 

developed. 

 

 

 

Figure 1.3 a) Steady-state operation[22] b) transient operation 

 

 

 The necessity to capture off-equilibrium dynamics is illustrated in Figure 1.3, 

which demonstrates the relationship between the state and input during steady-state and 

transient operations. The error caused by scheduling linear coefficients as functions of a 

state is negligible for the two-dimensional case in steady-state operation, represented by 

solid line in Figure 1.3a. However, as the trajectory moves away from the steady-state 

operating line as described by the dashed line, the error due to scheduling linear 

coefficients increases. For example, the weighted sum of slopes at equilibrium points b 

and c typically used in piecewise linear models as an estimate of the slope at point a of 

the actual trajectory would be quite different from the true value of the slope at point a. 
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The error can be even larger due to increased dimensionality. A linear model that is 

developed at each point along the trajectory (both on- and off- equilibrium), as shown in 

Figure 1.3b, offers an improvement over traditional piecewise linear models. The model 

is linearized at every time step along the transient trajectory, thus resulting in more 

accurate linear models along the transient trajectory. Moreover, the real time linearization 

eliminates the difficulty associated with scheduling a piecewise linear model.  

 An off-equilibrium linear model can be developed either analytically or 

numerically at every time step along the trajectory. In addition, a linear model based on a 

neural network can be utilized. The neural network based model offers the key benefit 

that engine dynamics can be represented by simple algebraic expressions; however, 

difficulties associated with the selection of training data and the validation of the model 

may exceed benefits with existing technology as stated before. The numerical real-time 

model offers accuracy but the computational cost would be too expensive for the real 

time implementation. The physics based analytical linear model shares the advantage of a 

neural network based linear model in that linearization is based on sets of algebraic 

expressions, keeping the computational cost low. 

 The analytical approach has been widely used during early years of aviation, 

mainly in flight dynamics and control applications[1]; however, this approach has not yet 

been applied to an aircraft jet engine dynamic model. Chung et al [6] developed an 

analytical linearization scheme for a static model of a generic back end (turbine – nozzle) 

of a turbofan engine as a proof of concept validation test. Development of an analytical 

linear model of a jet engine can benefit from well-known advantages of analytical 

linearization such as its strong ties to physical insights and reusability. It also offers 

excellent physical insight into engine dynamics. The analytical linear model may suffer 

from reduced accuracy due to required simplifications; however, it provides a much 

simpler solution computationally than numerical linearization[7]. Also, modifications of 
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the model to incorporate health degradation or other external factors become easier as the 

algebraic expressions can be easily modified.  

 The analytical linearization of a jet engine model is achieved in a two-step 

process as shown in Figure 1.4. The first step is to make simplifying assumptions to put a 

nonlinear model in an analytically linearizable form. The second step is to linearize the 

engine model by taking derivatives of these analytical expressions. The analytical 

linearization can be applied as long as the engine model is in a suitable form, i.e., 

typically in a reduced order form, where analytical expressions approximate all input-to-

output relationships. As analytical approximations are necessarily based on a physical 

understanding of the engine dynamics, they can also provide a convenient computational 

framework for detailed analysis of an engine model. In this thesis, various simplifying 

assumptions are used in arriving at an analytical linear model of a gas turbine engine 

valid over its transient operations. 
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Figure 1.4 Different linearization approach 
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 In summary, the linearization approach proposed in this thesis offers a twofold 

advancement in current jet engine control technology.  

 First, the real time linearization based on both on- and off- equilibrium 

captures large transient dynamics more accurately, as discussed. 

 Secondly, an analytical linearization approach using the sets of algebraic 

expressions derived from Taylor series expansion offers physical insights, 

computational efficiency and flexibility.  

In addition, this thesis offers in-depth analysis of the analytical linear model to 

demonstrate the validity of the proposed model and its potential future use.  

1.3 Thesis Organization 

 The thesis is organized as follows:  

 Chapter 2 through 4 describe the linearization and validation methodology. 

Chapter 2 describes a control oriented turbofan engine model in detail. Sets of 

expressions representing each component are presented. This control oriented nonlinear 

model is the basis for the linearization methods that follow. Chapter 3 discusses details of 

the novel linearization method. First, a general linearization scheme around arbitrary 

operating conditions (including on- and off- equilibrium conditions) is explained. Then, 

the simplifying assumptions necessary for achieving the analytical linearization are 

stated. Subsequently, the details of a component level linearization and integration of 

component linear models are presented. Chapter 4 presents the different validation 

methods to measure the linear model fidelity, including the normalized root mean squared 

error, normalized additive uncertainty and the -gap metric. The rationale behind using 

these validation measures is also discussed. The selected transient profile and the models 

for comparative study are described.  
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 Chapter 5 and 6 present the simulation results and the in-depth analysis of the 

linear model. Chapter 5 presents the simulations results to show achievement of desired 

fidelity using the proposed linearization approach. The results are compared with those 

obtained using a traditional piecewise linear model to demonstrate the superiority of the 

proposed approach during the transient operation. Numerical aspects of the analytical 

linear model are also analyzed in this chapter. Chapter 6 presents the analysis of the 

simplifying assumptions and shows the effects of each assumption on the fidelity of 

model.  

 Chapter 7 presents simple control and estimation application examples. The case 

study of a situation where the nonlinear values are not available is conducted. Moreover, 

a simple model inversion controller to track fan speed is used to illustrate the benefits of 

using off-equilibrium analytical linear models. 

 Finally, chapter 8 summarizes the thesis and presents suggested future work based 

on this research.  
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CHAPTER 2 

CONTROL ORIENTED NONLINEAR ENGINE MODEL  

 

 

 The proposed linearization approach requires a nonlinear engine model to run 

onboard in real time. Description of a control oriented nonlinear engine model is given in 

this chapter. The 0-D onboard model is based on the averaged fluid characteristics at 

discrete positions inside the engine, generally at the inlet and the outlet of each 

component [41]. It is common practice to represent the engine with a reduced number of 

dynamic states to achieve real time capability. A generic twin-spool turbofan engine 

diagram is presented in Figure 2.1.  

 

 

� 

� 

 

Figure 2.1 Generic two-spool turbofan engine diagram [17] 



www.manaraa.com

21 

 

tLPTtLPT

tHPTtHPT

tBurnertBurner

tHPCtHPC

tLPCtLPC

tfantfan

PT

PT

PT

PT

PT

PT

,

,,

,,

,,

,,

,,

],,[ e

f

AVBVVSV

w

][

, 21

mT

NN

Fast Dynamics Slow Dynamics

separate flow twin spool turbofan 

z x

u y

xzuF e ,,,

tLPTtLPT

tHPTtHPT

tBurnertBurner

tHPCtHPC

tLPCtLPC

tfantfan

PT

PT

PT

PT

PT

PT

,

,,

,,

,,

,,

,,

],,[ e

f

AVBVVSV

w

][

, 21

mT

NN

Fast Dynamics Slow Dynamics

separate flow twin spool turbofan 

z x

u y

xzuF e ,,,

 

Figure 2.2 Nonlinear engine model description  

 

 

 Typical inputs, outputs and states of a generic twin-spool turbofan are shown in 

Figure 2.2. The primary control input of system is fuel flow rate. Common additional 

control variables include variable stator vanes, variable bleed valve and variable exit 

nozzle area. Dynamic states are divided into two groups based on their frequency 

response. Shaft dynamics and heat soak dynamics are in a low frequency range whereas 

flow dynamics including pressure and temperature dynamics occur at high frequency. 

Outputs of system include selected flow properties, shaft dynamics, thrust and exit 

velocity. 

 A more detailed block diagram for a generic separate flow twin spool turbofan 

model is shown in Figure 2.3. Solid lines represent the fluid connections, dotted lines 

represent mechanical connections and dashed lines represent solver parameters. In this 

model, the “LPC” model consists of both the inner annulus of the fan as well as the low 

pressure compressor stages. The typical convention for station numbering of twin-spool 

turbofan models is used. 



www.manaraa.com

22 

 

fw

shaft

Pri

Nozzle
Inlet LPC

shaft

LPTPR

HPCRline

                      

  

         

   

               

sec,,5.12

_,,0.5

,,,5.4

,,,0.4

_,,5.2

outnozoutFan

bleedcoutnozprioutLPT

LPTTCAoutLPToutHPT

HPTTCAoutHPToutBurner

bleedcTCAoutHPCoutLPC

wwe

wwwe

wwwe

wwwe

wwwwe











HPC

N



2

LPCRline

HPT

N



2

LPT

N



1

LPC

N



1

FAN

N



1

1.0

12.5

2.5 3.0 4.0 4.5 5.0

TCA

2.0

12.0

0.0

fanRline
HPTPR

Fan
Sec

Nozzle

LPTHPTBurnerHPC

c_bleed
fw

shaft

Pri

Nozzle
Inlet LPC

shaft

LPTPR

HPCRline

                      

  

         

   

               

sec,,5.12

_,,0.5

,,,5.4

,,,0.4

_,,5.2

outnozoutFan

bleedcoutnozprioutLPT

LPTTCAoutLPToutHPT

HPTTCAoutHPToutBurner

bleedcTCAoutHPCoutLPC

wwe

wwwe

wwwe

wwwe

wwwwe











HPC

N



2

LPCRline

HPT

N



2

LPT

N



1

LPC

N



1

FAN

N



1

1.0

12.5

2.5 3.0 4.0 4.5 5.0

TCA

2.0

12.0

0.0

fanRline
HPTPR

FanFan
Sec

Nozzle

LPTHPTHPTBurnerHPCHPC

c_bleed

 

Figure 2.3 Separate flow twin-spool turbofan model 
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2.1 Simplifications in Nonlinear Model 

 The following simplifications are present in the detailed engine model. 

1. Bleed flow is extracted as a constant ratio of the total core flow. 

 The rate of change of bleed mass flow rate is assumed to be the same as the core 

flow.   

 totalbleed Kww   

2. Bleed flow is assumed to be extracted from the exit air flow of the high pressure 

compressor. 

3. Cooling flow is added to the high pressure turbine before expansion. 

4. A constant fraction of the bleed flow is assigned as customer bleed.  

5. Parasitic flows, except for turbine cooling air and customer bleed, are ignored.  

6. Torque losses in shaft are neglected.  

7. A converging nozzle type is used for both core and bypass flow. 

8. Pressure losses in the nozzle and duct are neglected.  

9. Rayleigh pressure drop is neglected inside the burner.   

2.2 Engine Dynamics Decomposition 

 Turbofan engines have multiple dynamic states at different frequency ranges as 

shown in Figure 2.4. Shaft dynamics and heat soak dynamics are in a low frequency 

range of less than 2 Hz whereas pressure and temperature dynamics occur at much higher 

frequency.  
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Figure 2.4 Typical locations of jet engine poles [29] 

 

 

 Such a nonlinear system with slow and fast dynamics is represented in terms of 

slow states x (shaft dynamics, heat soak dynamics, etc) and fast states z (flow dynamics 

in different components of an engine) as follows. 

),,(

),( ,

uzxgz

uzxfx








 

(2.1) 

 It is often desirable to reduce the system’s order to facilitate the analysis and 

design of dynamic control systems[14]. Less dominant poles on the far left of the 

dominant poles are considered as the quasi steady-states in order to reduce the order of 

the system. When one considers the flow behavior of an engine, the flow dynamics may 

be considered to be relatively fast, which are outside the typical bandwidth of primary 

engine controller (0-2 Hz, [20]). Hence, the flow dynamics of such a system may be 

residualized, i.e. the dynamic equations associated with z are treated as algebraic 

equations. Hence, the residualized form of the fast dynamics are given by 
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0),( , uzxg o  (2.2) 

The resulting equation (2.2) is an algebraic expression and can be solved for the 

residualized fast dynamic state z0. The residualization process is captured in the flow 

chart shown in Figure 2.5. In the present work, the engine model is reduced to include 

only the shaft dynamics.  
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Figure 2.5 Engine dynamics residualization 

 

 

2.3 Component Description  

 Details of the reduced order model at the component level for the generic turbofan 

are discussed in the following sub-sections. The details of generic component models of 

an engine required for linearization, such as compressor, combustor, turbine and nozzle, 

are adapted from NPSS component models and textbooks on gas turbine propulsion 

[3,16,23,36]. Any gas turbine engine model can be constructed using these generic 
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components in conjunction with some auxiliary components such as ducts and splitters. 

Bypass flow and core flow are treated in a similar manner. The component level 

equations are applied to both high speed spool and low speed spool elements and 

repeated as necessary. Gas properties are obtained from the gas tables. 

2.3.1 Compressor 

 Figure 2.6 shows representative inputs and outputs of a compressor type element. 

Fluid properties at the inlet of a compressor in addition to the shaft speed are necessary 

inputs for computing fluid properties at the outlet and the torque required for 

compression. Fluid properties of a compressor represented by stagnation temperature and 

stagnation pressure shown as a solid line in Figure 2.6 are fast dynamical states. Shaft 

speed represents a slow dynamical state. The Rline is used to uniquely identify pressure 

ratio, mass flow rate and shaft speed. It has no physical meaning and typically the first 

Rline coincides with the surge line. The remaining Rlines are roughly parallel to the surge 

line [23]. Other types of index system can also replace the Rline. Then equations (2.7)-

(2.9) are adjusted accordingly.  

 

 

Compressor
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Figure 2.6 Compressor block diagram 
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 A compressor is connected to the shaft and the torque supplied by the shaft is 

utilized to compress the flow. Processes inside a compressor can be represented by 

equations (2.3)-(2.19) where f1, f2, and f3 are functions representing a typical compressor 

map as shown in Figure 2.7 [23]. Fluid properties at the outlet are calculated by using 

changes in the thermodynamic properties given by the pressure ratio obtained from the 

compressor map. Relationships between thermodynamic properties are generalized as the 

function F. Loss in a compressor component is represented by the efficiency values from 

the compressor maps. Equations (2.15)-(2.17) allow turbine cooling air to be extracted at 

any compression stage. Fluid properties of bleed flow are determined by applying partial 

compression, given by constant K2 and K3. As discussed in the simplifying assumption 

section, it is assumed that the turbine cooling air is extracted at the end of the final stage 

of the compression of the compressor and K2 and K3 are set to one. 

 

 

 

Figure 2.7 Compressor map [23] 
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 In the control oriented 0-D model, a compressor is considered as a whole and the 

stage by stage characterization is not included. The generic compressor component model 

described above can be used to represent individually fan, low pressure compressor and 

high pressure compressor components.  
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2.3.2 Combustor 

 Typical inputs and outputs of a combustor component are shown in Figure 2.8. In 

addition to inlet fluid properties, fuel flow is a direct input to the burner. The output of 

the combustor is the product of the combustion process.  
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Figure 2.8 Combustor block diagram 

 

 

 Inside the combustor, the air and fuel are mixed and burned to produce high 

temperature gas which drives the turbine and produces thrust by passing through the 

nozzle. The pressure drop in the combustor due to friction is assumed to be constant. Heat 

is released in the combustion process and enthalpy at the exit of the combustor is given 

by energy balance. The lower heating value ,Q, depends on the specific type of fuel used 

and is constant. 
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tintout PKP )1(   (2.20) 
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2.3.3 Turbine 

 Inputs and outputs of a turbine component are given in Figure 2.9.  
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PRN

outtouttout wPT ,,
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Figure 2.9 Turbine block diagram 

 

 

 Processes inside the turbine are characterized by equations (2.23)-(2.39). Energy 

of gas flow in the turbine produces work on the shaft and drives the compressor. Mass 

flow rate and efficiency are obtained from the turbine maps which are similar to the 

compressor maps as given by equations (2.27) and (2.28). Expansion of gas inside the 

turbine causes a decrease in enthalpy, which is the source of the work that drives the 

compressor. The bleed flow to cool down the turbine is added at the inlet, which also 

expands to produce work as shown in equations (2.35) and (2.36). 
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2.3.4 Nozzle 

 Figure 2.10 shows typical inputs and outputs of a converging nozzle. In addition 

to basic fluid properties of incoming flow at the inlet, the ambient static pressure at the 

outlet determines fluid properties at the exit of the nozzle. Outputs of the nozzle include 

the thrust and flow velocity. 
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Figure 2.10 Nozzle block diagram 

 

 

 For subsonic flight, a converging nozzle is typically used. Distinctive flow 

characteristics based on choking and non-choking of the flow are determined by 

comparing the pressure ratio of the nozzle to the critical pressure as shown in equation 

(2.43). The nozzle is expected to choke at higher pressure ratios. When the nozzle is 

choked, the pressure at the exit does not fully expand to the ambient pressure and part of 

thrust is generated due to the pressure differential at the exit of the nozzle. When the flow 

is subsonic, the pressure at the exit fully expands to the ambient pressure and this 

becomes the condition for solving for the exit velocity.  

)1( losstintout KPP   (2.40) 
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2.3.5 Shaft  

 Shaft speed is determined from the conservation of angular momentum. Using the 

summation of the torque produced by turbine and torque required by compressor, the 

equation for shaft speed can be written as 

     
2

60
dt

J
N

compressorturbine








 

(2.47) 

2.3.6 Heat Soak Effect[3] 

 The heat transfer from the hot gas to the metal mass may become significant at 

the high pressure turbine due to large temperature gradient and metal mass. Transient 

energy caused by metal mass absorbing heat from hot gases can be represented by a 

simple first order transfer equation as shown in equation (2.48). The heat transfer effect 

of the metal temperature on the output gas can be represented by equation (2.49). The 

thermal lag due to the storage of heat in the engine metal may also be included in other 
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elements (such as high pressure compressor) if the heat soak effect becomes significant. 

In this research effort, the heat soak effect is excluded due to limitation of a model used 

for validation process  
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2.3.7 Continuity Equations/Flow Dynamics 

 Solver convergence is achieved by forcing mass flow rate at each component to 

match with one another. The solver is iterated until the following error terms achieve the 

desired tolerance.  

    _,,1 bleedcTCAoutHPCoutLPC wwwwe   
(2.50) 

 ,,,2 HPTTCAoutHPToutBurner wwwe   
(2.51) 

 ,,3 TCA.LPToutLPToutHPT wwwe   
(2.52) 

  _,,4 bleedcoutnozprioutLPT wwwe   
(2.53) 

outnozoutFan wwe sec,,5   
(2.54) 

 Solver iteration is not necessary if the volume dynamics for fluid properties are 

directly implemented. Volume dynamics are represented by a plenum between each of the 

major components in many existing engine models [5,35]. However, a model including 

volume dynamics must run at much higher frequency and is not feasible for real time 

implementation. 
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2.4 Summary 

 In this chapter, the details of the nonlinear engine model used for the control were 

described. The control oriented model is usually a 0-D component based model with 

reduced order dynamic states. A reduction in dynamic states is required to fulfill the 

computation requirement. It has been shown that residualization of the fast states can be 

utilized to reduce the order since the fast dynamics states are far outside the control 

bandwidth. The equations described in this chapter are the foundation for the 

development of linear models. 
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CHAPTER 3 

LINEARIZATION 

 

 

 In this chapter the development of an analytical linear model is discussed in 

detail. First, general on- and off-equilibrium linearization for the gas turbine engine 

model is briefly introduced. Then, the component level linearization process is explained 

in detail, including reduction of the set of nonlinear equations into analytically 

differentiable forms. The details of integrating the component level linear models to 

develop system level linear models are discussed next. This chapter concludes with a 

simple example of integration of component linear models. 

3.1 General Linearization Approach [4,22,26,32,56]  

 The nonlinear engine dynamics are written in generic form as  

),,(

0),,(
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0

uzxfx

uzxg





  (3.1) 

where g represents fast dynamics equations and f represents the slow dynamics equations. 

The nonlinear dynamics about some arbitrary position, ),,( 0 uzx , can be written as 

follows. 
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The plant is linearized using Taylor series expansion about the arbitrary 

position, ),,( 0 uzx , as follows: 
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where δx, δz, δu are perturbations from the linearization point, ),,( 0 uzx , and   
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Higher order terms have been neglected. Linearization is often conducted about an 

equilibrium condition where 0),,( 0 uzxf , in which case, equation (3.4) is simplified to  
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 In this work, linearization is conducted about an arbitrary position along the 

trajectory so equation (3.3) and (3.4) are preserved. Equation (4) can be rewritten into a 

more conventional form as 
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Note that the use of x is not conventional since it is now a perturbation of the time 

derivative, 
dt

dx
, as it includes an extra term given by ),,( 0 uzxf [32]. Linear coefficients, 

A and B, are computed analytically in the present work. A pictorial description of 

linearization about an arbitrary point is shown in Figure 3.1 where the solid arrow 

describes ),,( 0 uzxf  and the dashed arrow describes x . The dashed arrow can be seen 

as the combination of solid arrow and perturbation from the solid arrow. The linear 

coefficients represent the change in slope of the trajectory. 
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Figure 3.1 Linearization about arbitrary point 

 

 

 Similarly, the outputs of the engine can be linearized at ),,( 0 uzx  as follows 
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(3.8) 

3.2 Simplifying Assumptions for Linearization 

 The core of the development of an analytical linear model is to put a detailed 

nonlinear model into an analytically linearizable form by making simplifying 

assumptions. Simplification of the detailed model is first achieved at the component level 

and then at the system level.  The following simplifying assumptions are applied to each 

component to reduce the detailed engine model into an analytically linearizable form. 

Details of how each assumption is applied at the component level are discussed in the 

subsequent subsections. 

1. Assume gas is thermally perfect, where the following relationship holds.  

RTP   (3.9) 

Also, enthalpy of the thermally perfect gas is a function of temperature only (not of 

pressure) as shown below.  

dTTcdh p )(  (3.10) 

2. Gas path thermodynamic properties, cp and γ are assumed to be independent of 

temperature and, thus, constant (calorically perfect) within one component during one 

time step; however, variation in the properties due temperature differences among 

different components is considered. Using this assumption, the specific heat becomes 

constant and enthalpy can be further simplified as follows: 



www.manaraa.com

40 

 

Tch p  (3.11) 

This also causes γ to be constant.  

3.3 Component Level Linearization 

 A nonlinear engine model provides the parameters that are used for calculation of 

linear coefficients. Each component is independently linearized. Each component 

represents a simple static system as a result of the residualization of flow dynamics. 

Inputs and outputs of a single component are tied by nonlinear analytical expressions 

presented earlier. A linear model of each component is established by using Taylor series 

expansion about the current operating point. This is achieved by taking the partial 

derivative of each output with respect to an individual input as shown by the following 

equations.  
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(3.12) 

Here, y represents any intermediate output parameters, such as torque, required to 

represent processes inside a component. The intermediate output parameters are used to 

reduce the size of fast dynamic states matrix.  

 Each component linearization is based on the model described in chapter 2. Note 

that nonlinear equations described in chapter 2 may require minor modifications 

depending on the nonlinear model being used, but the basis should remain the same as 

they are founded on generic thermodynamic relationships. In the following subsections, 

the linearization approach is applied to generic components of a gas turbine engine.  
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3.3.1 Compressor 

 

 

 

Figure 3.2 Obtaining compressor map sensitivities 

 

 

 First, simplifications are applied in order to put all expressions into an analytically 

linearizable form. An analytically linearizable function is defined as a function whose 

derivatives can be analytically calculated (i.e. without applying numerical schemes) into 

a closed form format. Using the assumption 2 in Section 3.2 that cp and γ are constant and 

independent of temperature within one time step, equation (2.11) can be written as 

follows. 
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Also the stagnation temperature at the outlet of the compressor can be written as 

follows: 
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Equation (3.14) would have much smaller error due to simplification if the efficiency of 

the compressor map is defined using temperature instead of enthalpy.  

Again, using the assumption 2, equation (2.19) is simplified to     
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 The average gas properties cp and γ of inlet and outlet are used in each equation. 

Applying these simplifications, the compressor is represented by following group of 

equations  
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 Since these are now in analytically linearizable form with exception of map 

parameters, linear coefficients are obtained by taking partial derivatives of each output 

with respect to each input. A compressor map is in tabular form and either spline or 

neural network type [18] representation can be utilized to convert it into an analytically 

linearizable functional representation. An alternative approach is to store pre-computed 

values of derivatives (slopes) of the maps as indicated by Figure 3.2, which can be 

directly used in the linearization. For the proof of concept of real time linearization 

considered in this study, the latter approach is used. The linearized equations for 

compressor in explicit form are shown in equation (3.20). 
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3.3.2 Combustor 

 The specific heat, cp, is assumed to be constant during the linearization process 

with its value being different upstream and downstream of the burner by applying  the 

assumption 2 in Section 3.2 [36]. Equation (2.22) is simplified as follows. 

 
  tinpininbftoutpoutfin

tininbftoutfin

TcwQwTcww
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 (3.21) 

The combustor is represented by following analytic equations. 
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  0][  tinpinintoutpoutfinfb TcwTcwwQw  (3.23) 
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Using the above simplified set of equations, analytical linearization of the burner 

component model is obtained in explicit form as equation (3.26). 
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3.3.3 Turbine 

 Similar simplifications (assumption 2) made for the compressor component model 

are also applied to the turbine component model for achieving the analytical linearization. 
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Using these assumptions, the following analytic equations represent the turbine element. 

The second part of equations (3.28) and (3.30) are zero for the low pressure turbine. 
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These expressions are linearized as follows: 
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3.3.4 Nozzle 

 Using the assumption that gas properties are constant for one time step at each 

component level, the expression for critical pressure is simplified as follows, 

1
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




criticalPR  (3.32) 

 Using the perfect gas assumption and the constant specific heat, the nozzle 

component model equations are simplified as the following two groups of equations 

depending on flow condition at the throat of nozzle. The pressure at the exit fully expands 

to the ambient pressure when the flow is subsonic while it only partially expands when 

the flow is choked. These expressions are linearized as follows: 
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Figure 3.3 Generalized equations of turbofan 
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3.4 Component Level Linear Models in Generic Form 

 Algebraic expressions in section 3.3 are rewritten in more generic functional 

representations as shown in Figure 3.3. Each component is represented by functions with 

lower case alphabet. These equations are in implicit forms using the output of each 

element directly for simplification because all inputs and outputs of each component are 

combined to form vector z. For example, the fan is represented by functions a1 to a3 and 

k1 . Functions k1 to k10 represent the expressions for intermediate variables such as torque 

for different component. Nonlinear equations for each component are implicitly 

linearized as follows. 
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Continuity in Mass Flow Rate 
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 (3.52) 
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3.5 Integrated Linearization Approach 

 

 

Analytical Linear Model
u

wuxy

wuzxfwuxx





SDC

RBA



 ),,,( 0


iywuzx ,,,,

y
Analytical Linear Model

u

wuxy

wuzxfwuxx





SDC

RBA



 ),,,( 0


iywuzx ,,,,

y

 

Figure 3.4 System-level linearization 

 

 Linearized component models are stacked to obtain the system level model as 

shown in Figure 3.4. Linearization requires current nonlinear values in addition to input 

variations. The inlet pressure and temperature which vary with ambient condition are 

considered to be a disturbance w from a control perspective. Bounds on these disturbance 

parameters may be used for designing robust controllers. For simplicity, disturbance is 

assumed to be negligible. A residualized engine dynamic model with two dynamic states, 

N1 and N2, are considered in this study. A complete description of the system level inputs 

and outputs is given in the following: 
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(3.56) 
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 First, algebraic equations for fast dynamics are solved simultaneously by using 

matrix algebra. These equations are combination of equations (3.44)-(3.52) for each 

component. The internal solver variables in addition to the fast dynamics states such as 

the Rline and PR are included in the vector z for convenience. The resulting vector 

equation can be written as follows:  

0 xuz MLK  (3.57) 

 The extended form of the above equation is shown in the appendix at the end of 

the thesis. Each row block represents equations for individual component. Each row of 

the matrix K is independent of one another so the matrix K should be invertible. 

Numerical conditioning of the matrix K may improve the inversion accuracy. It may be 

possible to exploit the sparsity of K and develop computationally efficient algorithms to 

solve the set of linear equations. Equation (3.57) can be rewritten as follows to solve for 

Δz.  

 xuz  
MLK

1
 (3.58) 

Intermediate outputs including torque, thrust and exit velocity can be solved using the 

following: 

ux

xuzyi





 )()( FLEKGMEK

GFE

11  (3.59) 

 Intermediate outputs can be directly absorbed into the fast dynamics vector z, thus 

allowing one to combine matrices K, L, and M in equation (3.57) and E, F, and G in 

equation (3.60) to form an augmented matrix. However, the intermediate outputs are 
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represented separately in this study to reduce the size of matrix K, thus reducing the 

computational cost for the matrix inversion of K. Finally, the linearized shaft dynamics 

can be written as follows: 

uΔx

ux

yx i









BA

PFLPEKPGMPEK

P

11 )()(



 
(3.60) 

 

Inputs and outputs of each component as well as the number of equations for each 

component are summarized in Table 3.1. The size of system level inputs, outputs and 

states are summarized in Table 3.2. Dimensions of each matrix are given in Table 3.3. 

The form of each matrix for the twin-spool turbofan is given in Appendix at the end of 

the thesis.  

 This linearization methodology can extend to any standard gas turbine engine that 

utilizes compressor, combustor, turbine and nozzle elements. The frequency range for 

residualization of fast dynamic states is determined based on the desired controller 

bandwidth. The numbers of slow and fast dynamic states is set accordingly. The addition 

of control input should be easily incorporated using the proposed linearization approach 

as long as the input appears in one or more of the algebraic expressions describing the 

components. For example, variable stator vane inputs may appear in the form of an 

additional parameter in the component map description. Then, component map 

sensitivities with respect to the variable stator vanes will be computed. The addition of a 

variable nozzle area is already present in the component level linear model description. 

The input sensitivity matrix will have an additional number of columns that corresponds 

to the additional inputs as the system model will include sensitivity terms with respect to 

the nozzle area in addition to the fuel flow. 
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Table 3.1 Summary of inputs, outputs, and number of equations of each component 

Component Inputs Outputs Number of fast 

state dynamics 

equations 

Number of  

output 

equations 

LPC 
LPCtt RlinePT ,, 2020  25252525 ,,, wPT tt  3 1 

HPC 
HPCtt RlinewPT ,,, 252525  30303030 ,,, wPT tt  3 1 

Burner 
ftt wwPT ,,, 303030  FARwPT tt ,,, 404040  3 1 

HPT 
tHPTtt TPRwPT 30404040 ,,,,  45454545 ,,, wPT tt  3 1 

LPT 
LPTtt PRwPT ,,, 505050  50505050 ,,, wPT tt  3 1 

Primary Nozzle 
505050 ,, wPT tt  8880 ,, uFw  1 2 

Fan 
Fantt RlinePT ,, 2020  12121212 ,,, wPT tt  3 1 

Secondary Nozzle 
121212 ,, wPT tt  171717 ,, uFw  1 2 

Continuity N/A N/A 5 0 

Total   25 10 

     

     

Table 3.2 Size of integrated system 

n Number of fast dynamic states 25 

m Number of slow dynamic states 2 

l Number of inputs 1 

k Number of intermediate outputs 10 
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Table 3.3 Matrix dimension 

Matrix Size of matrix 

K n x n 

L n x l  

M n x m  

E k x n 

F k x l 

G k x m 

P m x k 
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Figure 3.5 Example of HPC-Burner-HPT-Nozzle  
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3.5.1 Example of matrix construction of HPC-Burner-HPT-Nozzle 

series in configuration 

 An example of a matrix to solve for the fast dynamics is shown in this section. 

Figure 3.5 only includes HPC-Burner-HPT-Nozzle components for readability. Equations 

of each component are stacked to form a larger matrix K. It is natural to follow the order 

of physical connections although it is not required. In an example, each colored block 

represents a single component. The matrix is not in a special form, but it is sparse, which 

should simplify the matrix inversion process. Other components are stacked similarly. 

The last block is reserved for the continuity of mass flow rate.  

3.6 Summary 

 The off-equilibrium analytical linearization process was developed in this chapter. 

First, simplifying assumptions necessary for achieving analytical linearization were 

identified. Then, the nonlinear model described in the previous chapter was adjusted by 

applying these identified simplifying assumptions, and linear coefficients for each 

component were derived using the partial differentiation. Finally, the integration of 

component level linear model for developing a system level linear model utilizing the fast 

dynamics states were described in detail. 
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CHAPTER 4  

MODEL VALIDATION METHOD 

 

 

Any new modeling methodology needs to be validated before it can be applied to 

real-world applications. The validation of a model is not an easy task as careful selection 

of data sets, tools and method for the validation are necessary. Thus, the validation of a 

model itself constitutes a topic for in-depth research. In this chapter, validation metrics 

for a linear dynamic engine model are established. First, the selection of tools for the 

model validation is discussed. Then, different validation methods are discussed in detail. 

The rationale behind the selection of a particular validation method is discussed followed 

by a description of the actual method.  

4.1 Validation tool 

4.1.1 Numerical Propulsion System Simulation (NPSS) 

An example engine given in the Numerical Propulsion System Simulation (NPSS) 

is selected for the proposed linearization method. NPSS is a cooperative effort among 

NASA, other government agencies and industry to provide a common tool for 

aerothermomechanical simulation of an aircraft engine [31]. Physical interactions inside 

an engine are captured in the NPSS. It provides a simulation environment of a generic 

zero-dimensional view of an engine[31]. The NPSS architecture is based on the 

component based object oriented concept and wide capability exists within the software 

for adding more features and fidelity. The NPSS library includes collection of 

components modules such as compressor, turbine and nozzle. These components are part 

of elements which are the main building blocks of an engine model [66]. The input file 
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and gas table are selected by the user. For the purpose of this study, the default gas table 

is used.  

4.1.2 Engine Characteristic 

The NPSS distribution includes several gas turbine engine examples. The twin-

spool, high bypass engine has been selected for evaluation of the proposed methodology. 

The example is complex enough to afford a realistic assessment of analytical linearization 

relative to legacy methods. It represents a 9000 lb commercial engine with a bypass ratio 

of 5. 

The model has been adapted to retain two dynamic states, N1 and N2, and one 

input, fuel flow rate. The analytical linearization method is equally applicable to a system 

with additional states and inputs, e.g., metal temperature states and variable geometry 

inputs. It is in fact anticipated that the advantage of the proposed method over the legacy 

piecewise linear approach will be more pronounced for increasingly complex, non-linear 

dynamical systems.  

Minor modifications were applied to an example engine to achieve the more 

realistic transient profile of existing turbofan engines. High speed spool inertia was 

adjusted to bring out more separation between the acceleration curve and deceleration 

curve as shown in Figure 4.1. High pressure spool speed that is corrected with high 

pressure compressor inlet condition is plotted against the corrected low pressure spool 

speed. The solid line represents the steady-state operating points. The profiles using the 

original inertia, given by the dashed line, shows a very small separation between the 

acceleration and deceleration segments. The engine with modified inertia, given in the 

dash dot line, exhibits more separation between the acceleration and deceleration profiles. 

The LPC may surge during the deceleration maneuver due to spool mismatch[20]. 

Benefits of using off-equilibrium linearization are expected to be larger for the larger 
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separation profile as the transient is further away from the steady-state line. Also the map 

parameter for the fan stall line is adjusted to further from a steady-state operation line to 

enable more aggressive acceleration profile.  
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Figure 4.1 N2c vs. N1c (at sea-level static condition) 
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Figure 4.2 wfc vs. N1c   (at sea-level static condition) 

 

 

The equilibrium of the example gas turbine engine for different flight conditions 

is given in Table 4.1 to Table 4.4 for different operating conditions. Table 4.1 shows the 

variation of engine equilibrium values for different power levels. Table 4.2 shows the 

effect of Mach number on the engine equilibrium values. Table 4.3 shows the variation in 

engine equilibrium values for different temperature variations from the standard day. 

Table 4.4 shows the engine equilibrium values at different altitude. 
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Table 4.1 The equilibrium values for engine states and inputs as a function of power 

lever angle (PLA) 

PLA 

(°) 

Alt 

(ft) 

Mach number dTs 

(°R) 

wf 

(lbm/s) 

N1 

(rpm) 

N2 

(rpm) 

Net thrust 

(lbf) 

Gross thrust 

(lbf) 

50 0 0 0 1.1604 3779.1 9790.3 9470.9 9470.9 

40 0 0 0 0.7985 3401.2 9373.3 7382.3 7382.3 

30 0 0 0 0.5805 3149.3 9116.2 5805.5 5805.5 

20 0 0 0 0.4344 2897.3 8865.6 4579.2 4579.2 

10 0 0 0 0.3318 2645.4 8631.2 3606.4 3606.4 

0 0 0 0 0.2574 2393.4 8421.4 2846.4 2846.4 

-10 0 0 0 0.2019 2141.5 8223 2223.1 2223.1 

-20 0 0 0 0.1579 1889.6 8020.1 1691.3 1691.3 

 

 

Table 4.2 Engine equilibrium values for a fixed PLA as a function of Mach number 

Mach 

number 

Alt 

(ft) 

dTs 

(°R) 

PLACS 

(°) 

wf 

(lbm/s) 

N1 

(rpm) 

N2 

(rpm) 

Net thrust 

(lbf) 

Gross 

thrust 

(lbf) 

0 0 0 50 1.1604 3779.1 9790.3 9470.9 9470.9 

0.2 0 0 50 1.1845 3794.2 9811.6 8063.8 9897.6 

0.4 0 0 50 1.2610 3832.5 9876.2 7290.2 11226 

0.6 0 0 50 1.3438 3834.6 9944.3 6812.0 13335 

0.8 0 0 50 1.4418 3791.9 10041 6520.8 16338 
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Table 4.3 Engine equilibrium values for a fixed PLA as a function of dTs 

dTs 

(°R) 

Alt 

(ft) 

Mach 

number 

PLACS 

(°) 

wf 

(lbm/s) 

N1 

(rpm) 

N2 

(rpm) 

Net 

thrust 

(lbf) 

Gross 

thrust 

(lbf) 

-60 0 0 50 1.07528 3553.80 9231.16 9469.29 9469.29 

-40 0 0 50 1.10687 3630.46 9423.89 9471.38 9471.38 

-20 0 0 50 1.12582 3705.54 9598.18 9447.57 9447.57 

0 0 0 50 1.16038 3779.09 9790.28 9470.88 9470.88 

20 0 0 50 1.09003 3742.89 9867.54 8952.77 8952.77 

40 0 0 50 1.01435 3706.56 9927.91 8402.72 8402.72 

60 0 0 50 0.95371 3681.86 9996.63 7926.07 7926.07 

 

 

Table 4.4 Engine equilibrium values for a fixed PLA as a function of altitude 

Alt 

(ft) 

Mach 

number 

dTs 

(°R) 

PLACS 

(°) 

wf 

(lbm/s) 

N1 

(rpm) 

N2 

(rpm) 

Net thrust 

(lbf) 

Gross 

thrust 

(lbf) 

0 0 0 50 1.1604 3779.1 9790.3 9470.9 9470.9 

5000 0 0 50 0.9383 3713.6 9616.7 7858.9 7858.9 

10000 0 0 50 0.76537 3646.87 9464.71 6512.25 6512.25 

15000 0 0 50 0.61291 3578.93 9295.25 5345.19 5345.19 

20000 0 0 50 0.48537 3509.66 9118.72 4348.99 4348.99 

25000 0 0 50 0.37558 3439.01 8919.78 3493.11 3493.11 

30000 0 0 50 0.29011 3366.87 8720.57 2783.40 2783.40 

35000 0 0 50 0.22800 3293.15 8559.34 2214.32 2214.32 
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4.1.3 The Truth Model 

In order to assess the proposed methodology, it is first necessary to establish the 

definition of a truth model. For time-domain analysis, the output of the nonlinear model 

provides a direct measure of the truth. In addition, the numerically derived linear model 

using the small perturbation method along a transient trajectory is considered as the truth 

plant for validation purpose. The central differencing scheme shown in equations (4.1) 

and (4.2) are used to minimize the effect of asymmetry. The plant is perturbed with 1% 

change in both positive and negative directions for each state and input independently to 

compute desired linear coefficients. The perturbation size is reduced until the desired 

tolerance is met to reduce the error caused by severe nonlinearity. 

i

jiijjiij

ji
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uxxxfuxxxf
a





2

),,(),,( 
  (4.1) 

u

uuxfuuxf
b ii

i




2

),(),( 
  (4.2) 

4.1.4 Piecewise Linear Model 

An analytical linear model developed at every time step along the transient 

trajectory is compared with conventional piecewise linear models scheduled with fan 

speed. Multiple linear models are developed numerically at steady-state conditions and 

are scheduled with scheduling parameter, η , as shown in equation (4.3) [25]. Steady-state 

values are also scheduled using parameter, η. The piecewise linear mode matches the 

truth model exactly at steady-state conditions where they are derived. The continuously 

scheduled linear model developed at each steady-state condition corresponding to N1 

represents the asymptotic limit of conventional piecewise linear models.  
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(4.3) 

 

 

4.1.5 Steady-state Condition Validation 

The analytical linear model developed at selected steady-state conditions is 

compared with the truth model developed using numerical perturbations. The validation 

of the linear model at the steady-state conditions are achieved via the normalized additive 

uncertainty and the -gap metric (which will be described in latter sections) between the 

analytical linear model and the truth model computed at selected steady-state conditions. 

4.1.6 The Bodie Maneuver  

The validation of the linear model can be achieved using different transient 

trajectories. It is important to select an aggressive yet critical maneuver to ensure that the 

methodology works in all situations. In addition, the benefits of using off-equilibrium 

real-time linearization are well illustrated by using an aggressive transient maneuver that 

covers a large operating region. Hence, the linear model is validated using the Bodie 

maneuver, named after the pilot who first used the maneuver during engine flight trials as 

shown in Figure 4.3 (a) [63]. The Bodie maneuver in which snap acceleration 

immediately follows snap deceleration represents the most aggressive transient operation 

that an engine would possibly need to go through during its operation. The transient 

trajectory of the Bodie profile on scaled compressor and turbine component maps are 

shown in Figure 4.4 through 4.8. Since the Bodie maneuver does not allow time for the 

carcass to thermally soak at the low speed which results in transient operation closer to 

the stall line than normal acceleration[63], the separation between the acceleration and 

deceleration is expected to be larger than if the heat soak dynamics were included. The 

simulation is done using the NPSS model at selected operating conditions. 
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Figure 4.3 (a)Power lever angle as function of time during Bodie maneuver (b) fuel 

input during Bodie maneuver 
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Figure 4.4 Bodie trajectory on Fan map (scaled) 
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Figure 4.5 Bodie trajectory on LPC map (scaled) 
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Figure 4.6 Bodie trajectory on HPC map (scaled) 
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Figure 4.7 Bodie trajectory on HPT map (scaled) 
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Figure 4.8 Bodie trajectory on LPT map (scaled) 
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4.1.7 Controller Description  

 The turbofan simulation includes a simple controller that converts the Power 

Lever Angle (PLA) command to fuel input while providing limit regulations. The 

controller architecture is shown in Figure 4.9. The PLA command is translated into the 

corresponding fan speed using the table look up. The error between desired fan speed and 

the actual fan speed is used to compute the incremental change in fuel flow rate to meet 

the demanded fan speed. This is integrated with a limit regulator to prevent the HPT inlet 

temperature and the fan speed from going over the design limits. The control logic selects 

the minimum of fuel increments calculated independently by each one of limit regulators. 

In addition, control logic is implemented to limit acceleration and deceleration rate of the 

fuel to avoid compressor stall. The controller is used only to provide reasonable fuel 

input to the engine in simulation and is not optimized in this study. 
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Figure 4.9 Diagram of an engine control system 
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4.2 Validation Method 

Different model applications require different validation metrics. Three different 

metrics are selected to validate the model and to measure fidelity of the model from 

different perspectives. While time domain validation gives good qualitative measure, the 

interpretation of results in terms of control synthesis is difficult. The normalized additive 

uncertainty and the gap metric compensate for this shortcoming by providing the 

modeling error in terms of the robust control synthesis problem. The normalized additive 

uncertainty captures the maximum error that occurs in the whole frequency spectrum in 

an open loop while the gap metric measures the maximum error in a closed loop 

response.  

4.2.1 Time Domain Validation 

4.2.1.1 Component Level Validation 

Each component is represented by sets of algebraic expressions and no dynamic 

equations are involved since all fast dynamics states are residualized. Thus, only time 

domain validation is processed for the component level validation. The difference 

between the nonlinear responses and the linear estimations are computed and normalized 

using the maximum change in nonlinear response per time step to calculate the error as 

shown in equation (4.4). 

maxNL

ALNL

y

yy
error



 
  (4.4) 

4.2.1.2 Integrated System Fidelity Measure 

 The time domain response comparison immediately reveals the qualitative 

similarity/dissimilarity of the trend between two different models. To represent the error 



www.manaraa.com

76 

 

in single quantity, the model error is quantified using the standard root mean squared 

error (RMSE) over a specific trajectory.  

 




n

i

ii yy
n

RMSE

1

2
10

1
 (4.5) 

Here, y0 represents the results from the truth model and y1 represents the model to be 

validated. The RMSE can be normalized using the maximum change over a single time 

step as shown in equation (4.6) where NRMSE represents normalized root mean squared 

error. 
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 (4.6) 

There are multiple outputs in the model. The weighted sum of RMSE of useful outputs 

can be used to determine the model uncertainty as follows if desired weights are known.  
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where 1

1




p

j

jw   

In this thesis, un-weighted NRMSE is used since the desired weight is unknown. The 

weight selection is part of the controller synthesis and depends greatly on the controller 

requirement. The actual value from the nonlinear simulation is used for the truth model; 

therefore, the NRMSE captures error due to nonlinearity as well as the modeling error. 
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4.2.2 Robust Control Essentials  

4.2.2.1 Performance Specifications [38,64,65] 
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Figure 4.10 Feedback configuration 

 

The standard configuration for the feedback system is shown in Figure 4.10. The 

relations between output, reference signal, disturbances and noises are given by equation 

(4.8).  
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(4.8) 

Of all transfer matrices described above, the following transfer matrix describes how the 

system reacts to load disturbances and the measurement noise [2].  

  1
PCI   1

CPI  
(output) sensitivity matrix, (input) sensitivity 

matrix 
(4.9) 

  PPCI
1

  
load sensitivity matrix (4.10) 
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  1
CPIC


  

noise sensitivity matrix (4.11) 

  1
 PCIPC  

complementary sensitivity matrix (4.12) 

Good performance requires that following values to be small particularly in a low 

frequency range 

  1
PCI  ,   PPCI

1
 ,   1

CPI ,   1
CPIC


  (4.13) 

Good robustness requires that following to be small particularly in a high frequency 

range. 

  1
PCIPC


 ,   1

CPICP


  (4.14) 

At frequencies such that 1)( PC  or 1)( CP , the following are true.  
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PPC)IC
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 (4.17) 

If 1)( PC , then 

)()(( CPC)IC
1   

 (4.18) 

)()(( PCPC)IPC
1   

 (4.19) 

Equations (4.15)-(4.19) suggest that the desired closed loop behavior can be achieved by 

manipulation of the open loop gains )(),( PCPC  [38]. Hence, the requirement for 
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achieving good robust stability and performance translates to the open loop requirement 

of achieving 

1)( PC , 1)( CP , 1)( C  

in some high frequency range for achieving good performance and  

1)( PC , 1)( CP , M)(C  

in some low frequency range where M is not too large for achieving good robustness.  

 Robust stability and performance is defined by Zhou et al as following: 

Definition 4.1 [65] 

Suppose the nominal plant, 1P , where  is an uncertainty model set and K is the 

resulting controller which stabilizes the nominal plant P1 for a set of performance 

objective. Then the closed-loop feedback system is said to have robust stability if K 

internally stabilizes every plant belong to  . The closed loop feedback system is said to 

have robust performance if the performance objectives are satisfied for every plant 

belong to  .  

Definition 4.1 is valid under different assumptions on the uncertainty set  . For 

example, it is defined as   :21 WWP  for the additive uncertainty.  

4.2.2.2 H∞ Loop Shaping 

The H∞ loop shaping design procedure introduced by McFarlane and Glover [38] is 

described in this section. This design procedure guarantees closed-loop stability and a 

level of robust stability at all frequencies while obtaining performance/robust stability 

tradeoffs described in previous section. The loop shaping is achieved in three main steps 

as shown in Figure 4.11.  
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1. First, the precompensator, W1 and/or postcompensator, W2 are applied so the 

nominal plant is in a desired shape. The shaped plant Ps is shown in the dashed 

line in Figure 4.11. 

2. Calculate bmax where  
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(4.20) 

Here ss MN
~

,
~

 are the normalized coprime factors of Ps. If bmax << 1, then adjust 

W1 and W2 in step 1. Select b ≤ bmax, and synthesize C∞ which satisfies the 

following 

  111 ~ 
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3. The feedback controller is given by following.  

21 WCWC   (4.22) 

Note that the generalized stability margin b can also be written as  
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Maximizing the generalized stability margin can be seen as the minimization of 

the H infinity norm of the closed loop sensitivity and complementary sensitivity 

functions. The following theorem relates the generalized stability margin to the well-

known gain margin and phase margin parameters.  
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Theorem 4.1[60] 

If [P,C] is stable, then GM(P,C)  ≥ (1+bP,C)/(1-bP,C) and PM(P,C) ≥ 2arcsin(bP,C) 

The  gap metric which will be introduced later in this chapter quantifies the model 

uncertainty in terms of reduction in the generalized stability margin b. 
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Figure 4.11 H∞ loop shaping [64] 
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4.2.3 Normalized Additive Model Error [33,64,65] 

Dynamic system modeling error can be captured in a form of plant uncertainty 

that includes unmodeled dynamics and poorly known system parameters as shown in 

Figure 4.12. This is common representation in robust control problem. 
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Figure 4.12 Additive uncertainty 

 

 

The difference between the nominal plant P1 and the truth model P0 is treated as 

the additive model uncertainty described by equations (4.23) [33]. 

)()()( 10 ssPsP a  (4.23) 

This additive uncertainty is measured using the H∞ norm as shown in equation (4.24) 

whose measure is in the absolute value. 


 10 PPa  (4.24) 
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where the H∞ norm of system G(s) is the distance in the complex plane from the origin to 

the farthest point on the Nyquist plot of G(s) [64]. H∞ norm of the system is defined as 

follows. 

  


jGG
R


 sup  (4.25) 

This term is finite only if G is proper and there are no poles on the right half plane. The 

H∞ norm is interpreted as the peak of the frequency response. 

The additive uncertainty representation is practical in a robust stabilization 

problem, and normalization of this measure provides better understanding of model 

fidelity between different models. The additive uncertainty is normalized with the H∞ 

norm of the true plant as shown in (4.26) for comparing uncertainties of different 

approximated linearized models.  
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10

P

PP
m  (4.27) 

The normalized additive uncertainty is utilized instead of the conventional 

multiplicative uncertainty shown in equation (4.27). The difference is that the normalized 

additive uncertainty is normalized with the true system instead of the nominal model. 

This approach is taken for fair comparison of the different modeling approach (where 

nominal model changes but the truth model is the same. Both errors are normalized with 

the same value). The true system is known unlike conventional robust control problem 

where only nominal model is provided. Moreover, the quantification of the error is the 

objective here rather than designing robust controller for unknown truth plant; therefore, 



www.manaraa.com

84 

 

the definition is taken from a different context. The following theorem relates the additive 

uncertainty to the robust stability problem.  

 

Theorem 4.2 [64] 

Let   :21 WWP  and let K be a stabilizing controller for the nominal 

plant P. Then the closed-loop system is well-posed and internally stable for all 1


if 

and only if 1)( 1
1

2 


 WPKIKW . 

The proof utilizing the small gain theorem is given in [64].  

4.2.4 The [nu]-Gap Metric [59,60,64]  

4.2.4.1 Rationale 
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Figure 4.13 Closed loop model uncertainty [59] 
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The gap metric numerically assesses the model accuracy in terms of close loop 

controller performance. The gap metric quantifies a distance between two dynamical 

systems. The concept of the gap metric was first introduced by El-Sakkary to compute the 

gap between two closed operators [15]. Benefits of the gap metric include its ability to 

measure the distances between two unstable systems and a symmetry property under 

operator inversion[59]. The gap metric does not measure the difference between two open 

loop systems; rather it measures a distance between two closed loop systems. Time 

domain response analysis described in the previous section validates the open loop 

response of the linear model against the nonlinear model. A detailed analysis of the gap 

metric measure in the interest of the controller design will be carried out for the closed 

loop response comparison.  

 

 

 

Figure 4.14 a) Open loop step responses b) closed loop step responses [59] 
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Vinnicombe has illustrated the importance of measuring distance between two 

closed loop systems using the following example [59]. Consider three systems as follows: 

22
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(4.28) 

Open loop system responses to the step command are shown in Figure 4.14 a). System 

P0, and P2 have similar responses while system P1 exhibits very different open loop 

response to the step command. However, when each system is closed with the unity 

feedback controller, system P1 behaves similar to P0 and P2 exhibits very different closed 

loop step response. The ν-gap metric between system P0 and P1 is a small value of 0.02 

and ν-gap metric between P0 and P2 is a large value of 0.898. This illustrates the 

importance of measuring system distance under the closed loop performance from the 

controller design perspective.  

 

4.2.4.2 The [nu] gap metric definition [59,60] 

A metric on a space S satisfies following properties.  

1. ),(),( xyyx    

2. 0),( yx  if and only if x=y. 

3. 0),( yx for all x,y in S.  

4. ),().,(),( yzzxyx    for all x,y in S.  

The gap metric and -gap metric is a metric and therefore satisfies the above axioms.  
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Definition 4.2 [15,59]: 

 The gap between two closed operators K1 and K2 in a Hilbert space H is defined 

as the gap between their graphs viewed as closed subspaces of the Hilbert space H x H, 

i.e.,, 

 ),(),,(max),( 122121 PPPPPP 


  
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Note that the gap metric by El-Sakkary is defined as the gap between H2 graph spaces. 

Later Vinnicombe proposed a new definition of gap metric using L2 space with the 

winding number condition shown in definition 2 [19,52,59]. The winding number is 

defined as follows: 

 

Definition 4.3 [64]  

Let g(s) be a scalar transfer function and let Γ denote a Nyquist contour indented around 

the right of any imaginary axis poles of g(s). Then the winding number of g(s) with 

respect to this contour, denoted by wno(g) is the number of counterclockwise 

encirclement around the origin by g(s) evaluated on the Nyquist contour Γ.  

 

Cauchy’s argument principle 

Let f(s) be an analytic function along the contour Γ in the complex plane. Then 
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N=Z-P 

where N= number of positive encirclements of the origin 

Z= number of zeros of f(s) inside Γ 

P=number of poles of f(s) inside Γ. 

 

Using the Cauchy’s argument principle stated above, the winding number can be 

computed as follows: 

g(s)g

sgg

ggsgwno

 of poles RHPopen  ofnumber )(

)( of zeros RHPopen  ofnumber )(

)()())(( 











 

It is also true that, for a square, non-singular, real rational transfer function matrix G(s) 

the following is true.  

)()())(G(det  GGswno   

Graph symbols G and G
~

 denote normalized right and left graph symbols for Pi and are 

defined as follows:  

 iii
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~~
:

~
,: 
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




  

where Mi, and Ni are normalized right co-prime factorization. The Vinnicombe metric 

also known as ν-gap metric is defined as follows: 

Definition 4.4[59]:   
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It can also be written as follows: 

Definition 4.5[59]:   
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The ν-gap metric is the smallest metric that holds the following two statements:  

RS1[59]:  Given a nominal plant  R pxqP 1 , a compensator  R pxqC and a 

number β, then: 

[P2,C] is stable for all plants, P2, satisfying  ),( 21 PP  if, and only if, 

CPb ,1
. 

RS2[59]: Given a nominal plant P1, a perturbed plant P2,  R pxq and a number 

)( 1Pbopt  then:  
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[P2,C] is stable for all compensators, C, satisfying CPb ,1
 if, and only if, 

 ),( 21 PP , 

where CPCopt bPb ,1 sup:)(   

The first statement states that any plant distanced less than β from the nominal plant P1, is 

stabilized by any compensator stabilizing the nominal plant P1, with the stability margin 

that is at least β. The second statement states that if a plant P2, is distanced from the 

nominal plant by   that is greater than β, then there exist some compensator C 

stabilizing a nominal plant with stability margin β, which destabilizes P2. The general 

stability margin, b, defined in the previous section, is directly related to the H∞ loop 

shaping procedure.  

The following theorem gives useful bound to the reduction in the stability margin 

caused by the distance from the nominal plant.  

Theorem 4.3[59]  

For any P0, P1, C, 

 ),P(Pδbb ν,CP,CP 10arcsinarcsinarcsin
01

  

The proof is given in reference[59]. The above theorem implies that a smaller gap metric 

results in a smaller reduction in the general stability margin.   

4.2.4.3 Scaling 

 Each output measure can be scaled so all outputs are in the similar magnitude 

range of the -gap metric for easy comparison between different output measures. The 

individual outputs can either be scaled with the maximum value of possible perturbation 

or with the DC gain of the system with a single output. Using the DC gain of the system 
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shown in equation (4.29), all transfer functions for individual output are scaled to 

magnitude of 1 and the comparison becomes more meaningful.  

BCADS 1  (4.29) 

 uDBAsICy  1)(  (4.30) 

 DBAsICSyS   111 )(  (4.31) 

The scaled -gap metric is used to determine the appropriate output for the controller 

design. If a certain output has much larger -gap metric than other outputs, it is 

recommended to avoid that particular output for designing the controller. The scaled -

gap metric should only be considered in terms of comparing different outputs, and should 

not be treated as the absolute value of controller specification as weight selection 

determines the loop shape and improves the -gap metric in the interested frequency 

range. Weight selection is important, but out of the scope of this thesis as the objective is 

not to design a controller.  

4.3 Summary 

In this chapter, methods for validating a linear model were discussed. An example 

engine model in NPSS was modified to give more realistic transient behavior to be used 

for the validation. The Bodie profile was selected for generating the largest separation 

between the acceleration and deceleration curve. The response in time domain was 

selected for validation of the component level models. Three different methods chosen 

for the validation of an integrated model are NRMSE, normalized additive uncertainty, 

and the -gap metric. The time domain response gives good qualitative measure and 

quantifies the modeling error including the nonlinearity. The normalized additive 

uncertainty captures the modeling error in terms of robust control problem in the open 

loop. Finally, the -gap metric captures the modeling error in the closed loop control 
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context and provides the modeling error in terms of the well known stability measure. 

Three methods described above cover the model validation from different contexts and 

should provide basis for a comprehensive model validation. 
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CHAPTER 5 

ASSESSMENT OF MODEL FIDELITY 

 

 

In this chapter, the fidelity of the analytical linear model is assessed using the 

validation methods described in chapter 4. The analytical linearization method was 

applied to the NPSS example model for the in-depth analysis of the fidelity of the model. 

Furthermore, simulation results are compared to the results of a conventional piecewise 

linear model. The model is first validated at the component level; the validation of the 

integrated model follows.  

 

5.1 Component Level Validation 

 

 

Component Model
x,δu,δzi 

00 ,u,x)g(z

x,u,z0

oδz

Component Model
x,δu,δzi 

00 ,u,x)g(z

x,u,z0

oδz

 

Figure 5.1 Component level linearization 
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Figure 5.1 represents the inputs and outputs of each component. Each component 

is validated using responses to a simple doublet fuel input and the Bodie profile before 

the integration of component level linear models. Explicit forms of input to output 

relationships were described in Chapter 2. Changes in each of the component outputs are 

computed by evaluating inputs to the linearized functions at the current operating 

condition. Figure 5.1 – Figure 5.9 present simulation results of each component. Linear 

responses of the analytical off-equilibrium linear model are compared with nonlinear 

simulation results. Change in each of output parameter is plotted against time. Error is 

normalized with the maximum change per time step as described in chapter 4. These 

figures show that each component is bounded by 5% error for the doublet fuel input and 

10% error for the Bodie maneuver. Error close to the boundary occurs only when the 

nonlinear simulation values themselves have discrete jumps, and stays much less than the 

bounds most of time. Most of discrete jumps should vanish if component maps are 

smoothed out. A large error of approximately 60% is observed once around 12 seconds to 

the primary nozzle velocity, as shown in Figure 5.8. This is due to the primary nozzle 

moving from subsonic flow to choked flow. The effect of this large error on the thrust and 

mass flow rate is minimal and can be neglected for the purpose of this study.  
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Figure 5.2 Fan validation: response to a) double fuel profile b) Bodie maneuver 

(bottom) 
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Figure 5.3 LPC validation: response to a) doublet fuel profile b) Bodie maneuver 

(bottom) 
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Figure 5.4 HPC Validation: response to a) doublet fuel profile b) Bodie maneuver 

(bottom) 
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Figure 5.5 Combustor validation: response to a) doublet fuel profile b) Bodie 

maneuver (bottom) 
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Figure 5.6 HPT validation: response to a) doublet fuel profile b) Bodie maneuver 

(bottom) 
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Figure 5.7 LPT validation: response to a) doublet fuel profile b) Bodie maneuver 

(bottom) 
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Figure 5.8 Primary nozzle validation: response to a) doublet fuel profile b) Bodie 

maneuver (bottom) 
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Figure 5.9 Secondary nozzle validation: response to a) doublet fuel profile b) Bodie 

maneuver (bottom) 
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5.2 Integrated Model 

5.2.1 Steady-state Operation 

After each component level linear model is validated, all component level linear 

models are integrated to form a full analytical linear model. In this section, the fidelity of 

an analytical linear model is evaluated during steady-state operation. Normalized additive 

uncertainty and the -gap metric for different outputs at the selected power levels at sea-

level static condition is given in Table 5.1. The normalized additive uncertainty is 

bounded by 0.063 and the -gap metric is bounded by 0.026. Although strong 

correlations between the normalized additive uncertainty and the -gap metric are not 

necessary as the former measures the error in open loop system response while the latter 

measures the error in closed loop system response, they exhibit qualitatively similar 

trends in this particular flight condition. 

 

Table 5.1 Validation of linear model at steady-state operation at sea-level static 

PLA N1 N2 Wf Normalized 

additive 

uncertainty 

(N1) 

Normalized 

additive 

uncertainty 

(N2) 

-gap 

metric 

(N1) 

-gap 

metric 

(N2) 

50 3779.1 9790.3 1.1604 0.0079 0.0525 0.0086 0.0210 

40 3401.2 9373.3 0.7985 0.0112 0.0370 0.00121 0.0132 

30 3149.3 9116.2 0.5805 0.0203 0.0135 0.0152 0.0060 

20 2897.3 8865.6 0.4344 0.0082 0.0375 0.0134 0.0150 

10 2645.4 8631.2 0.3318 0.0164 0.0626 0.0188 0.0099 

0 2393.4 8421.4 0.2574 0.0076 0.0449 0.012 0.0138 

-10 2141.5 8223 0.2019 0.0139 0.0215 0.0254 0.0085 

-20 1889.6 8020.1 0.1579 0.0039 0.0231 0.0063 0.0101 
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Table 5.2 Validation of linear model at steady-state operation at alt=25000ft, 

dTs=20°R, M=0.5 

PLA N1 N2 Wf Normalized 

additive 

uncertainty 

(N1) 

Normalized 

additive 

uncertainty 

(N2) 

-gap 

metric 

(N1) 

-gap 

metric 

(N2) 

50 3605.1 9264.3 0.4466 0.0136 0.0484 0.00063 0.0209 

40 3244.6 8943.0 0.3253 0.0168 0.0281 0.0123 0.0173 

30 3004.2 8699.8 0.2362 0.0094 0.0360 0.0032 0.0145 

20 2763.9 8431.9 0.1683 0.0023 0.0290 0.0032 0.0120 

10 2523.5 8190.9 0.1251 0.0376 0.0249 0.0082 0.0081 

0 2283.2 7961.0 0.0921 0.0165 0.0349 0.0208 0.0097 

-10 2042.9 7730.1 0.0660 0.0199 0.0321 0.0264 0.000759 

-20 1802.5 7501.9 0.0466 0.0213 0.0419 0.0130 0.0024 

 

 

Table 5.2 gives normalized additive uncertainty and -gap metric for different 

outputs at the selected power levels at an altitude of 25000ft, Mach number of 0.5, and 

+20°R from the standard day temperature. This flight condition is selected to give a 

similar Bodie profile while away from standard day sea-level static condition. The 

normalized additive uncertainty is bounded by 0.05 and the -gap metric is bounded by 

0.027. These modeling errors are within reasonable range for robust controller design. In 

these flight conditions, the normalized additive uncertainty for the system with output of 

N2 and both -gap metrics show similar trends. The normalized additive uncertainty for 

the system with output of N1 has a different trend, which is the lowest of all four 

measures and bounded by less than 0.02 in all cases, showing the least amount of 

variation.  
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The evaluation of the model fidelity during steady-state operation is significant 

since it measures the fidelity of the analytical linearization method. The analytical 

linearization method can either be used in combination with the off-equilibrium 

linearization or with the conventional piecewise linearization approach. The analytical 

linearization method can replace the conventional small perturbation method for 

developing a piecewise linear model. This results in only a minor reduction in fidelity 

while gaining flexibility and physical insights.  

5.2.2 Response in Time Domain 

The integrated model is validated using methods described in chapter 4. The 

fidelity of the analytical linear model during large transient operation is assessed using 

the Bodie maneuver in the time domain. Firstly, a qualitative assessment is made by 

comparing outputs of the off-equilibrium analytical linear model with the results from the 

nonlinear simulations. Figure 5.10 shows the change in shaft dynamics during the Bodie 

maneuver. Figure 5.11 and Figure 5.12 present the comparison between the linear 

estimates and the actual nonlinear change in temperature and pressure at selected stations, 

respectively. The linear model captures the trend in rapidly changing engine parameters. 
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Figure 5.10 Shaft dynamics during Bodie manuever at sea-level static 

 

Figure 5.11 Change in temperature at different stations during Bodie manuever at 

sea-level static 
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Figure 5.12 Change in pressure at different stations during Bodie manuever at sea-

level static 

 

 

Figure 5.13 and Figure 5.14 show the evolving linear coefficients during the 

Bodie maneuver. These are elements of linear matrix A and B which represent the system 

dynamics in state space representation as introduced in Chapter 3. Each coefficient is 

plotted against time and compared with linear coefficients of the truth model which are 

obtained using numerical perturbation along the trajectory as explained in chapter 4. 

Linear sensitivities are also compared to the traditional piecewise linear models generated 

using a different number of interpolation points. The plots of linear coefficients give a 

good qualitative assessment of each linearization method. The piecewise linear model 

with 24 interpolation points replicates the continuously interpolated model very 

accurately. In fact, it has fewer numerical issues (such as convergence to the wrong 
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solution due to discontinuous slopes in the performance maps) than the continuously 

interpolated model. Therefore, the piecewise linear model with 24 interpolation points is 

used as the baseline traditional piecewise linear model for the comparison study. If the 

nonlinear simulation does not exhibit convergence error, the increasing number of 

interpolation points for the piecewise linear model will result in a more accurate capture 

of the truth model. The fidelity of the model decreases as the number of interpolation 

point decreases. The linear coefficients of the piecewise linear model with six 

interpolation points deviate far away from the linear coefficients of the truth model, 

especially when rapid changes occur in the trajectory.  

The conventional piecewise linear model is more accurate than the analytical real 

time linear model during the steady-state operation as shown by overlapping linear 

coefficients of the truth model and the piecewise linear model near the end of the 

trajectory. This is expected since the truth model and the piecewise linear model are 

derived at the same operating conditions using the same numerical perturbation method 

during steady-state operation. Nonetheless, the analytical real time linear model captures 

the truth model more closely than the piecewise linear model during large transient 

operation. The difference between the piecewise linear model and analytical linear model 

is elaborated during the rapid change in engine dynamics due to the sudden change in 

fuel flow rate as a result of snap acceleration that occurs at 8 seconds. Under these 

conditions, the analytical linear approach shows a significant improvement over the 

piecewise linear scheduled coefficient. Also, note that the improvement of using the 

analytical linear model over the piecewise linear model is more distinctive in B2 than B1 

as the piecewise linear model is scheduled with N1 and captures N1 dynamics more 

accurately.  
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Figure 5.13 Evolution of elements of A matrix during Bodie manuever at sea-level 

static  

 

Figure 5.14 Evolution of element of B matrix during Bodie manuever at sea-level 

static  
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The model error in the time domain is quantified using NRMSE. Figure 5.15 

shows the comparison of NRMSE for selected outputs using different linearization 

schemes along the Bodie maneuver at the sea-level static condition. The y axis on the plot 

represents the NRMSE and the x-axis represents the different outputs. Each bar is the 

NRMSE during the Bodie trajectory for a given output. The solid bar is the NRMSE for 

the analytical real time linearization, the horizontally lined bar is NRMSE for the 

piecewise linear model with 24 interpolation data points, and the vertically lined bar is 

NRMSE for the piecewise linear model with 6 interpolation points. The NRMSE for the 

analytical linear model for different outputs ranges from 0.010 to 0.022. The variation 

among the different outputs is unnoticeable since it is within the same order of 

magnitude. Much larger variation is observed in the NRMSE of different outputs of the 

piecewise linear model. The NRMSE of the scheduling parameter is much less than that 

of other parameters for the piecewise linear model. For example, the smallest NRMSE is 

0.0038 for N1 while the largest NRMSE is 0.06 for N2. This is more than an order of 

magnitude difference whereas the variation using the analytical linear model was around 

a factor of two. It is concluded that the current state of art using piecewise linear model is 

fairly accurate for the state that it is scheduled along with; however, the error would be 

much larger if non-scheduling states are used for controller design as the trajectory moves 

away from the steady-state positions. As expected, the piecewise linear model with 24 

interpolation points is much better than the piecewise linear model scheduled with 6 

interpolation points. 
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Figure 5.15 Comparison of normalized RMSE for selected outputs at sea-level static  

 

 

5.2.3 Normalized Additive Uncertainty  

Figure 5.16 and Figure 5.17 show the normalized additive uncertainty for 

different linearization schemes for the systems with outputs of N1 and N2, respectively. 

The advantage of using the off-equilibrium analytical linear model is illustrated by these 

plots. The normalized additive uncertainty is plotted against the corrected N1 speed for 

the Bodie trajectory. The normalized additive uncertainty for analytical linear model is 

kept below 0.07 for both N1 and N2. The normalized additive uncertainty for the 

piecewise linear model with 24 points shoots up as high as 0.18, which is more than twice 

of that of the analytical linear model. The normalized additive uncertainty for the 

piecewise linear model with 6 points is much higher than that of the piecewise linear 
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model with 24 points as expected. The normalized additive uncertainty of the piecewise 

linear model approaches zero near full shaft speed as it reaches the steady-state condition; 

however, it grows large during rapid transient operation. While the fidelity of the 

analytical linear model stays almost constant, the fidelity of the piecewise linear model 

changes drastically during transient operation.  

 

 

 

Figure 5.16 Comparison of additive uncertainty of system output of N1 using 

different linearization schemes at sea-level static 
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Figure 5.17 Comparison of additive uncertainty of system output of N2 using 

different linearization schemes at sea-level static 

 

 

5.2.4 The [nu]-Gap Metric 

Figure 5.18 and Figure 5.19 show the-gap metric for the outputs of N1 and N2, 

respectively, for different linearization schemes. For the closed loop validation, the 

comparison between different linearization schemes for N1 and N2 are very different. For 

the system with output of N1, the piecewise linear model works almost as well as the 

analytical linear model except at very low power, where the error of piecewise linear 

model is about twice that of the analytical linear model. This means that the reduction in 

the general stability margin bp,c due to the uncertainty in the real-time analytical model is 

less than 0.03 whereas it may decrease as much as 0.06 for the piecewise linear model.  
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The difference in the -gap metric is magnified for the system with output of N2. The 

reduction in the general stability margin using piecewise linear model would be more 

than quadruple the analytical real time linear model as shown in Figure 5.19. The larger 

difference is due to the fact that the piecewise linear model is scheduled with N1, causing 

larger discrepancy between the transient trajectory and the steady-state line for N2 than 

N1. As the example engine model in NPSS used for these comparisons does not fully 

include all the nonlinearities, it is expected that the error values seen by the piecewise 

linear model to be much larger if one were to include all the nonlinearities typical of a 

nonlinear engine model.  

 

 

 

Figure 5.18 Comparison of the -gap metric of system output of N1 using different 

linearization schemes at sea-level static 
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Figure 5.19 Comparison of the -gap metric of system output of N2 using different 

linearization schemes at sea-level static 

 

 

Figure 5.20 to Figure 5.26 present results during the Bodie maneuver at different 

operating conditions. The operation is performed at an altitude of 25000ft, Mach number 

of 0.5 and +20°R deviation from the standard day temperature. The piecewise linear 

model is developed at this ambient condition; therefore, there is no modeling error due to 

scheduling along the ambient condition for the piecewise linear model (equivalent to 

scheduling continuously along the operating condition). There is very little variation 

during the transient operation in the NRMSE, the additive uncertainty and the -gap 

metric of the analytical linear model due to change in ambient conditions. The range of 

these values is similar to that of the sea-level static condition. This suggests that the 
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fidelity of the analytical linear model is independent of ambient conditions. On the other 

hand, the results of the piecewise linear model differ from the sea-level static condition. 

All NRMSE, additive uncertainty, and the -gap metric for the system with output of N1 

and N2 are much higher than operation at sea-level static condition. This is due to the 

more drastic and frequent changes of direction in linear sensitivities than the sea-level 

static case as shown in Figure 5.20 and Figure 5.21 and the inability of the piecewise 

linear model to capture such dynamic behavior as they are developed along the steady-

state line. It is concluded that the fidelity of the piecewise linear model depends on the 

ambient condition. This adds an additional advantage to the analytical real time linear 

model.  

 

 

 

Figure 5.20 Evolution of elements of A matrix during Bodie manuever at 

alt=25000ft, dTs=20°R, M=0.5  
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Figure 5.21 Evolution of elements of B matrix during Bodie manuever at 

alt=25000ft, dTs=20°R, M=0.5 

 

Figure 5.22 Comparison of RMSE for selected outputs using different linearization 

schemes at alt=25000ft, dTs=20°R, M=0.5  
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Figure 5.23 Comparison of additive uncertainty of system output of N1 using 

different linearization schemes at alt=25000ft, dTs=20°R, M=0.5 

 

Figure 5.24 Comparison of additive uncertainty of system output of N2 using 

different linearization schemes alt=25000ft, dTs=20°R, M=0.5 
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Figure 5.25 Comparison of -gap metric of system output of N1 using different 

linearization schemesat alt=25000ft, dTs=20°R, M=0.5 

 

Figure 5.26 Comparison of -gap metric of system output of N2 using different 

linearization schemes at alt=25000ft, dTs=20°R, M=0.5 
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5.2.5 Effect of Flow Solver Tolerance  

The effect of flow solver tolerance on the fidelity of the analytical linearization 

scheme is examined in this section. The truth model is generated using a solver tolerance 

of 10
-7

. The analytical linear model is derived using a solver tolerance between 10
-7

 and 

10
-3

. The normalized additive uncertainty and the -gap metric for the analytical linear 

model of different tolerance levels are shown in Figure 5.27-Figure 5.30. The effect of 

solver tolerance on evaluation of algebraic expression is minimal. Therefore, any 

difference in these plots of different solver tolerance levels can be explained by the 

nonlinear simulation converging to different values. Since only a minor difference is 

observed in these figures, it is concluded that the analytical linearization is robust to the 

level of flow solver tolerance.  

 

Figure 5.27 Normalized additive uncertainty of system output N1 using different 

tolerance 
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Figure 5.28 Normalized additive uncertainty of system output of N2 using different 

tolerance 

 

Figure 5.29 -gap metric for system output N1 using different tolerance 
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Figure 5.30 -gap metric of system output N2 using different tolerance 

 

 

5.2.6 Scaling 

Figure 5.31 shows the -gap metric of the unscaled system for selected outputs. 

The -gap metric is plotted against the corrected N1. The y-axis is in logarithmic scale to 

incorporate a large range of the -gap metric, which is primarily due to different units of 

outputs. Usually scaling is used for simpler controller design and analysis in practical 

applications. To eliminate the effect of different units, all system transfer functions are 

scaled to the magnitude of 1 using a DC gain, as explained in Chapter 4. Using the 

equivalent normalized system, the -gap metric computation is repeated. The scaled -

gap metric is shown in Figure 5.32. The -gap metric for the scaled system for different 

outputs results in a similar range and exhibits similar behavior for the most of outputs. 
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Therefore, any of these outputs can be used for the controller synthesis. The turbine 

temperature exhibits the highest -gap metric presumably due to the bleed assumption. 

Scaling is more important in the MIMO system as different outputs possess different 

units. Two outputs, N1 and N2, that are examined in detail in this thesis use the same unit, 

so the magnitude of the DC gain of both SISO systems are in a similar range. Scaling and 

selection of weight should be carefully considered for a controller synthesis problem. 

Since the controller synthesis is out of the scope of the thesis, the rest of analysis in this 

thesis is done using the unscaled system for computing the -gap metric.  

 

 

 

Figure 5.31 Unscaled -gap metric for selected outputs  
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Figure 5.32 Scaled -gap metric for selected outputs  

 

 

5.3 Summary 

The off-equilibrium analytical linearization method has been applied to the 

example model in NPSS. The resulting linear model was validated against the truth 

model using the NRMSE, the normalized additive uncertainty and the -gap metric. Also, 

the conventional linearization approach was implemented on the same engine model to 

demonstrate the advantage of the proposed linearization method over the conventional 

piecewise linear model. The benefit of using off-equilibrium analytical linearization is 

more apparent in cases such as designing a controller for non-scheduling parameters. 

Improvements may not be as significant in certain cases such as a designing controller for 

scheduling parameters. Thus, the design requirement should be carefully considered 
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before choosing the linearization scheme. For example, the conventional piecewise linear 

models proved to be adequate when designing a controller for the scheduling parameter. 

Also, the conventional piecewise linear models produced very small error for both 

scheduling and non-scheduling states near the steady-state conditions as expected. 

However, the results showed noticeable improvement in the fidelity of the linear model 

using an analytical off-equilibrium approach over that of the conventional linear models 

during a large transient operation especially for the non-scheduling parameters. The 

improvement is expected to be larger for an engine with more nonlinearity during 

transient operation.  
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CHAPTER 6 

ANALYSIS OF SIMPLIFYING ASSUMPTIONS 

 

 

In this chapter, the simplifying assumptions used for analytical linearization are 

analyzed in detail. The effect of each assumption on the fidelity of the model is discussed. 

Assumptions from chapter 3 are restated here for convenience.   

1. Assume gas is ideal, where the following relationship holds.  

nRTPV   (6.1) 

Moreover, the enthalpy of the thermally perfect gas is function of temperature 

only (not of pressure). Using this assumption, the following relationship for 

enthalpy is established.  

dTTcdh p )(  (6.2) 

2. Gas path thermodynamic properties, cp and γ are assumed to be 

independent of temperature and, thus, constant (calorically perfect) within one 

component during one time step; however, variation in the properties due 

temperature differences among different components is considered. Using this 

assumption, the specific heat becomes constant and enthalpy can be further 

simplified as follows: 

Tch p  (6.3) 

This also causes γ to be constant.  

Certain levels of simplifying assumptions are essential to put a nonlinear model into the 

analytically linearizable form. These assumptions may be relaxed slightly by using more 
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complex representations of gas properties, such as a polynomial representation for cp. The 

benefits of including more complex gas property representation are expected to be 

insignificant in comparison to the complexity that is added to the analytical linearization. 

Also, results may actually become worse due to inconsistency between equations. The 

effect of above stated assumptions on model fidelity is analyzed in detail to determine if 

the model error is within acceptable bounds in this chapter. 

Before necessary simplifying assumptions are analyzed, two extra assumptions with 

respect to bleed are considered here. These extra assumptions are not absolutely 

necessary for analytical linearization, but would reduce the computational complexity. 

These assumptions are stated as follows. 

1. Enthalpy change due to the turbine cooling air inside the turbine is assumed to be 

negligible. Assuming the bleed is expanded at the same efficiency as the primary flow 

(this is the assumption used in the detailed engine model), enthalpy at the outlet of the 

turbine is written as follows. 

  bleedbleedititbleedttt whwhhwhwh
w

h  44540304040
45

45 )(
1

  (6.4) 

The enthalpy change due to bleed fraction is assumed to be negligible. Then 

equation (6.4) is simplified as follows: 

  4045404040
45

45 )(
1

whhwh
w

h tittt    

404540

45454040

)( whh

whwh

tit

tt




  

(6.5) 

 The expression for the stagnation temperature at the turbine outlet is obtained as 

equation (6.6) when cp is also assumed to be constant (i.e.  cpo = cpi= cpavg ) 
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2. The torque produced by turbine cooling air is assumed to be negligible. 
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The effect of these assumptions is analyzed in detail for the refinement of the model. 

6.1 Analysis of Perfect Gas Assumption  

The assumption of thermally perfect gas is necessary to use conventional analytical 

equations. It is shown in [16] and [10] that cp and γ are both very weak functions of 

pressure below 3600 °R (2000K). In the range of temperatures of interest for a gas 

turbine, the effects of pressure on the values of cp and γ are order of 0.1% and assumed 

negligible for the required precision [10]. Therefore, the thermally perfect gas 

assumptions is justified (that pressure dependence of these gas property is minor 

compared to the temperature dependence) and no further investigation is made with 

regard to the thermally perfect gas assumptions.  

6.2 Analysis of Bleed Assumption 

The bleed assumptions with respect to temperature and torque are treated together 

as they are closely coupled. Two levels of approximations are considered in this section. 
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The first set of assumptions is the original bleed assumptions stated in the previous 

section. The second set of assumptions is a relaxed version that accounts for the 

temperature change and torque produced by the bleed portion of the mass flow rate added 

at the inlet of the turbine as, shown in equations (6.9) and (6.10). 

  bleedbleedibleedtitbleedbleedtt whhwhhwhwh
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Equation (6.9) and (6.10) assume constant cp and γ at all flow levels. (Inflow from the 

combustor, inflow from the compressor, and outflow from the turbine; use the average 

between the inflow from the combustor and the outflow from the turbine). 

The normalized additive uncertainty and the -gap metric for the system with 

outputs of N1 and N2 for different levels of approximations are presented in Figure 6.1- 

Figure 6.4.  
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Figure 6.1 Additive uncertainty of system output of N1 at sea-level static using 

different bleed assumptions 

 

Figure 6.2 Additive uncertainty of system output of N2 at sea-level static using 

different bleed assumptions 
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Figure 6.3 ν-gap metric of system output of N1 at sea-level static using different 

bleed assumptions 

 

Figure 6.4 ν-gap metric of system output of N2 at sea-level static using different 

bleed assumptions 
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The bleed assumptions have only minor effects on the system with an output of 

N1. On the other hand, the large difference between models with different level of 

approximations for the system with an output of N2 clearly indicates that the bleed flow 

has huge effects on the high spool shaft speed. Both normalized additive uncertainty and 

the -gap metric are an order of magnitude larger for the system with the original set of 

assumptions. Consequently, the bleed is accounted for using minimal assumptions to 

increase the accuracy in the final refined model. The variation in the additive uncertainty 

and the -gap metric due to the increase in bleed fraction is minimal in the refined model 

using minimal bleed assumptions, as shown in Figure 6.5 and Figure 6.6.  

 

 

 

Figure 6.5 Additive uncertainty of system output of N2 using different bleed 

fractions 
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Figure 6.6 ν-gap metric of system output of N2 using different bleed fractions 

 

 

6.3 Analysis of Simplifying Assumption for the Combustor 

In this section, gas property assumptions of the combustor are analyzed in detail. 

The enthalpy balance in equation (6.11) requires the assumption with respect to the gas 

properties.  

  030304030  bPRfttf hwhwhwwF   (6.11) 

The equation (6.11) is linearized into a generic form as  
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Different levels of approximations can be applied to four different linear coefficients as 

shown in Table 6.1.  

 

 

Table 6.1 Different level of assumption of the burner 

Partial 

Derivative 

Case 1 

cp =f(T) 

 

Case 2 

cp =constant, but different at 

inlet and outlet 

Case 3 

cp=constant, average of 

inlet and outlet 

30w

F




 tt hh 3040   tptp TcTc 30304040   )( 3040 ttpavg TTc   

fw

F




 bPRout hh   bPRtp hTc 4040  bPRtpavg hTc 40  

tT

F

30


 3030wcp

 3030wcp  30wcpavg  

tT

F

40


 4040wcp  4040wcp  40wcpavg  

 

 

The Case 1 corresponds to the truth model. The Case 2 in the middle column assumes the 

constant cp, but different at inlet and outlet of the burner while the Case 3 in the third 

column uses the average value of cp, at inlet and outlet. Two of the linear sensitivities of 

second column, 
tT

F

30


and

tT

F

40


, match the truth value of the first column exactly. The 

Bodie trajectory is used to quantify the fidelity of the model with different 

approximations. The following tasks were applied to the engine model before an 

investigation of the burner approximations to minimize effects of other assumptions.  
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1. Remove the bleed from the model (both turbine cooling air and customer bleed 

are set to zero) 

2. Other component level assumptions are minimized using numerical sensitivities 

where applicable. 

First, the effect of simplifying assumption is analyzed in the component level. The 

change in the outlet temperature using each approximation is shown in Figure 6.7.  
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Figure 6.7 Comparison of temperature of burner using different assumptions  
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The top plot presents the change in temperature resulting from three different 

cases of linear models in addition to results from the nonlinear model. The middle plot 

shows the normalized error with respect to the results from nonlinear model. The error in 

Case 1 is caused by higher order terms (i.e. nonlinearity). The bottom plot exhibits the 

error of Case 2 and 3 when Case 1 is considered as the truth model. The purpose of this 

plot is to isolate the origin of the error to the simplifying assumptions of gas property 

inside the combustor. Results from Case 2 are very close to the results from the truth 

model given by Case 1 whereas Case 3 produces a much larger error.  

The effects of simplifying assumptions are also analyzed using system level 

integrated results. The normalized additive uncertainty and the -gap metric of Cases 2 

and 3 calculated with respect to Case 1 as the truth model are shown in Figure 6.8 and 

Figure 6.9. The normalized additive uncertainty and the -gap metric for both N1 and N2 

of Case 2 are much smaller than those for Case 3. It is concluded that the effect of 

original assumption of the combustor is minimal and can safely be used for analytical 

linearization. Therefore, the constant gas property, different at the inlet and outlet, is 

selected for the combustor component in the final refined model.  
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Figure 6.8 Additive uncertainty of system outputs of N1 and N2 vs. N1c  using 

different burner assumptions 

 

Figure 6.9 -gap metric of system outputs of N1 and N2 vs. N1c using different burner 

assumptions 
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6.4 Gas Property Assumptions for Compressor and Turbine 

In this section, assumption 2 (calorically perfect gas assumption) is analyzed for the 

compressor and turbine components. Case 1 utilizes numerical perturbation for 

temperature, and enthalpy (not temperature and specific heat) for the torque at the 

component level. Case 2 is defined as the model using original assumptions. The truth 

values of linear coefficients for the temperature are obtained by using numerical 

perturbation as shown in equations (6.13) and (6.14) for the compressor and turbine, 

respectively. The truth value of the torque is obtained using an analytical expression 

based on enthalpy as shown in Equation (6.15).  
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 (6.15) 

Equations (6.13) and (6.14) still assume that the change in gas properties are incorporated 

in direct changes in four parameters, Ttin, Ptin, Rline(or PR) and N. Then it is 

automatically assumed that the change in cp and γ are included in the perturbation of Ttin, 

Ptin, Rline(or PR) and N. The equations for Case 2 are from chapter 3 and restated here 

for convenience. Only the nonlinear forms of the temperature equations are stated here, 
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the linear form were described in the chapter 3. The efficiency is defined in terms of 

enthalpy in an example model. Equations (6.16) and (6.17) would have smaller error if 

the actual efficiency on the component map of the nonlinear model were defined using 

temperature instead of enthalpy.  
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Figure 6.10 Fan simplifying assumption validation 
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Figure 6.11 LPC simplifying assumption validation 

 

 

Figure 6.12 HPC simplifying assumption validation 
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Figure 6.13 HPT simplifying assumption validation 

 

 

Figure 6.14 LPT simplifying assumption validation 
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The effect of simplifying assumptions is analyzed in each component using the 

Bodie maneuver and are shown in Figure 6.10-Figure 6.14. The results from the nonlinear 

truth model are plotted using the dashed lines. The solid lines with circular markers 

represent the results from Case 1, which is based on component level numerical 

linearization. The error in numerical linearization is caused by neglecting higher order 

terms and neglecting effects of other parameters. The error due to neglecting higher order 

terms is very small. The solid lines with diamond markers represent results using the 

original assumption of average gas properties. The errors include both the nonlinear 

effects and effects of simplifying assumptions. The error between Case 1 and Case 2, 

which is computed assuming that Case 1 is the truth model, is given by the brown cross 

marker. All errors between Case 1 and Case 2 are bounded by 5%. Errors are much 

smaller in the fan and LPC than other components because the variation in temperature is 

much smaller in these components and the effect of temperature variation on the gas 

property in these elements is negligible.  

Caution should be exercised due to coupling between the assumptions for torque 

and temperature. The truth value of torque without using the truth value of temperature 

may result in larger error due to mismatching and vice versa. 

 

Table 6.2 Case description for the analysis of gas property 

Case 1 Everything using original assumption 

Case 2 Fan using original assumption, everything else using minimum assumptions 

Case 3 LPC using original assumption, everything else using minimum assumptions 

Case 4 HPC using original assumption, everything else using minimum assumptions 

Case 5 HPT using original assumption, everything else using minimum assumptions 

Case 6 LPT using original assumption, everything else using minimum assumptions 
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 The effect of simplifying assumptions is also analyzed in the integrated system 

level model. The truth system is derived using the linear model with fewer assumptions 

(numerically derived temperature coefficient and more accurate torque representation). 

This model is different from the truth model described in Chapter 4. In fact, this model is 

still derived using the analytical linearization method, but each linear coefficient of fast 

dynamic states are derived numerically or using fewer simplifications, resulting in 

reduced error. The normalized additive uncertainty and the -gap metric with respect to 

the truth system are computed for different cases described in Table 6.2. The results from 

these cases are shown in Figure 6.15 and Figure 6.18.  

 

 

Figure 6.15 Normalized additive uncertainty of system output of N1 vs. N1c  using 

different assumptions 
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Figure 6.16 Normalized additive uncertainty of system output of N2 vs. N1c using 

different assumptions 

 

Figure 6.17 -gap metric of system output of N1 vs. N1c using different assumptions 
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Figure 6.18 -gap metric of system output of N2 vs. N1c using different assumptions 

  

The model errors caused by gas property assumptions are bounded by small 

values for both closed loop and open loop. This bound is a reasonable cost for achieving 

the analytical linear model. Note that the biggest contributor the error is from the high 

pressure turbine element. It is suspected that this is due to greater temperature variation in 

high pressure turbine compared to other elements.  

 The modeling error caused by the gas property assumptions in the compressor and 

turbine will disappear completely if the efficiency is obtained using the relationship 

between the temperatures instead of using enthalpy measure.  
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6.5 Summary 

The effects of simplifying assumptions used in the analytical linearization on the 

fidelity of the linearized analytical model were analyzed in detail. Then the model was 

refined to achieve the desired level of fidelity while satisfying computational 

requirements. The assumptions on the bleed were relaxed because the original 

assumption caused large discrepancies from the truth model and the resulting linear 

model showed unsatisfactory level of fidelity. The refined model still requires some level 

of assumptions with respect to the gas property of the bleed flow; but the model with the 

relaxed assumption is able to achieve the required fidelity. The assumptions with respect 

to gas properties of the combustor, compressor and turbine were also analyzed in detail. 

The effect of the assumptions on model fidelity is within acceptable range. The benefits 

of making these assumptions far exceeded the cost of the small reduction on model 

fidelity. 
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CHAPTER 7 

MODEL APPLICATIONS 

 

 

This chapter performs case studies to investigate potential problems of the proposed 

linearization method and to introduce a useful control application.  

 

7.1 Case Study 

 

The presented linearization method is based on the assumption that the nonlinear 

values from the current operating condition are available. In this section, a study is 

performed to investigate the case when nonlinear simulation fails to generate a converged 

solution. Two possible solutions are investigated. The first method involves simply 

holding the previous linear sensitivities whenever the nonlinear simulation fails to 

converge in time. The second method is to use the previously developed linear 

coefficients to estimate the current nonlinear values to be used for the evaluation of the 

analytical expressions. 

 

7.1.1 Solution 1: Use of Previously Converged Nonlinear Values  

The solution of using previously converged nonlinear values is equivalent to 

placing a zero-order-hold (ZOH) in between evolving linear coefficients. The linear 

coefficients are held constant for a certain amount of time during the Bodie trajectory and 

compared with the truth model, which is updated every time step, using additive 
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uncertainty and the gap metric as shown in Figure 7.1. This ZOH results in the 

quantized linear coefficients as shown in Figure 7.2. The ZOH should not have too much 

effect on a slowly varying system; however, it would cause large errors in a rapidly 

varying system. Since the Bodie trajectory results in rapid changes in engine states, error 

due to ZOH is well illustrated.  

 

 

Analytical 
Linearization 

NPSS Nonlinear 
Runs

uyzx ,,, Zero 
order 

Hold (n) 

Numerical 
Linearization

Compare
ν-gap metric, 

additive 
uncertainty

0P

ALP

 

Figure 7.1 Structure of analytical linearization with ZOH 
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Figure 7.2 B matrix during Bodie trajectory with ZOH=5 

 

Figure 7.3 and Figure 7.4 show the normalized additive uncertainty for the system 

with an output of N1 and N2, respectively, for different ZOHs. Figure 7.5 and Figure 7.6 

show the -gap metric for the system with an output of N1 and N2, respectively, for 

different ZOHs. Each value is plotted against the corrected fan speed. The baseline case 

(AL) uses continuously updated nonlinear values for calculating linear coefficients with a 

sampling time of 0.05 seconds.  

When the nonlinear values are held constant for two consecutive sampling 

periods, results do not deviate much from the case with the continuous update of linear 

coefficients for all additive uncertainty and -gap metric. The system with a ZOH of 3 

starts to drift away from the baseline case. However, most of the time it still generates 

much smaller error than the piecewise linear model for both open loop and closed loop. 

The open loop system error grows as large as that for the piecewise linear model when 
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the linear sensitivities are held constant for 5 sampling periods. However, the closed loop 

system uncertainty of the analytical linear model with a ZOH of 5 is still much smaller 

than that of the piecewise linear model, especially for the system with output of N2. The 

additive uncertainty of the analytical linear model with a ZOH of 7 exceeds the additive 

uncertainty of the piecewise linear model in multiple places; but -gap metric for N2 is 

still much smaller than the piecewise linear model and the -gap metric for N1 is about 

the same as that of the piecewise linear model.  

It is concluded that missing nonlinear values for a couple of time steps is not a 

serious issue and the real-time analytical linear model along the transient trajectory is still 

preferred over the piecewise linear model developed along the steady-state lines. With the 

robust controller design, the failure to achieve the nonlinear solution for multiple 

sampling times will not result in any catastrophic effects as conventional linear models 

already include large deviations during large transient. In fact, the reduction of the 

frequency of linear coefficients update can be considered if the computational aspect 

bears more weight than accuracy.  
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Figure 7.3 Additive uncertainty of system output of N1 for different zero order hold 

time 

 

Figure 7.4 Additive uncertainty of system output of N2 for different zero order hold 

time 
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Figure 7.5 -gap metric of system output of  N2 for different zero order hold time 

 

Figure 7.6 -gap metric of system output of N2 for different zero order hold time 
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7.1.2 Solution 2: Use of Linear Model Estimation 

The alternative solution is to use the linear model to estimate current values that 

can be used for calculating linear coefficients. This can be repeated as necessary for 

predicting an engine transient trajectory as shown in Figure 7.7. Gas properties are 

obtained from the table lookups from the NPSS gas table using the estimated value from 

the linear model. Also the map sensitivities are obtained using the estimated values from 

the linear model. This method is more complex than the first method described as it 

requires estimating the nonlinear values. On the other hand, this is more powerful as the 

linear model can replace the nonlinear model in the future if it can be enhanced with a 

Kalman filter using actual measurements. Such an enhanced model may also be used for 

improving solver convergence. The estimated values from the linear model can be used 

for the solver initial guess to speed up the solver convergence and to prevent solver 

instability. In the present work, such an estimation model is only briefly discussed to 

demonstrate the possibility for the potential future work as an extensive analysis is 

outside the scope of this thesis.  
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Figure 7.7 Estimation model  
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 Since the setup does not include correction such as a Kalman filter, the estimated 

values slowly drift away from the actual trajectory with increasing time due to 

accumulated error. Also any hard nonlinearity, such as a discontinuous slope in the map, 

contributes to rapid accumulation of the error. Therefore, a carefully selected, modified, 

shorter, transient trajectory is used in this section for demonstration purposes. This is still 

snap deceleration followed by snap acceleration and there is rapid change in the states. 

Figure 7.9 to Figure 7.11 present the linear estimates of selected shaft dynamics, 

temperature and pressure for the state and input trajectory shown in Figure 7.8. The linear 

estimates using analytical linearization is compared with the actual difference from the 

nonlinear simulation. The linear estimates capture the actual values well even though the 

linear coefficients are calculated using estimated nonlinear values from the linear model. 

The linear estimates start to drift away from the actual response at around 7 seconds. The 

linear coefficients are plotted against time in Figure 7.12 and Figure 7.13. Again, results 

are compared with the piecewise linear model. Even though the modeling error is larger 

than when the nonlinear simulation results are used for computing the linear coefficients, 

the benefit of using the analytical real time linear model over using the piecewise linear 

model is well demonstrated in coefficient B2, which is non-scheduling parameter.  
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Figure 7.8 States and input during modified trajectory 

 

Figure 7.9 Shaft dynamics comparison between off-equilibrium analytical linear 

model using estimation, and nonlinear values 
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Figure 7.10 Temperature at different stations comparison between off-equilibrium 

analytical linear model using estimation, and nonlinear values 

 

 

Figure 7.11 Pressure at different stations comparison between off-equilibrium 

analytical linear model using estimation, and nonlinear values 
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Figure 7.12 Evolution of elements of A matrix during transient operation using three 

different linearization methods 

 

Figure 7.13 Evolution of elements of B matrix during transient operation using three 

different linearization methods 
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The quantitative model errors using additive uncertainty and -gap metric for 

different outputs is presented in Figure 7.14-Figure 7.17. The advantage of using off-

equilibrium linearization is well demonstrated in all four parameters. The modeling errors 

using an estimated value for the computation of linear coefficients stay within reasonable 

bounds for designing a controller. In fact, the errors stay below the errors of the piecewise 

linear model for this particular trajectory most of time. The estimation model fares much 

better than the piecewise linear model during severe transient operation. The results are 

promising for potential future development of a linear estimation model for a nonlinear 

engine system.  

 

 

 

Figure 7.14 Normalized additive uncertainty of system outputof N1  
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Figure 7.15 Normalized additive uncertainty of system output of N2  

 

Figure 7.16 -gap metric of system output of N1  
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Figure 7.17 -gap metric of system output of N2  

  

 The limitation of the model for a standalone estimation application is observed in 

a more aggressive trajectory. Although the trend of linear sensitivities are still well 

captured during the Bodie trajectory as shown in Figure 7.18 and Figure 7.19, model 

error accumulates much quicker than the previous example and the model loses accuracy, 

as shown by the quantified error in Figure 7.20 through Figure 7.23. The rate at which 

error accumulates depends on the trajectory as some trajectories are affected more 

severely by the simplifying assumptions. Also, fast accumulation of error occurs when 

the transient trajectory goes through areas where map sensitivities change rapidly (e.g. 

discontinuous map slope). This observation leads to the conclusion that the model by 

itself cannot replace the nonlinear model for estimation application and the addition of a 

correction filter such as a Kalman filter is required to improve accuracy. 
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Figure 7.18 Evolution of elements of A matrix during Bodie manuever using three 

different linearization methods 

 

Figure 7.19 Evolution of elements of B matrix during Bodie manuever using three 

different linearization methods 
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Figure 7.20 Normalized additive uncertainty of system output of N1  

 

Figure 7.21 Normalized additive uncertainty of system output of N2  
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Figure 7.22 -gap metric of system output of N1  

 

Figure 7.23 -gap metric of system output of N2  
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7.2 Model Inversion Controller Example 
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desiredN _1
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Figure 7.24 Model inversion control block diagram 

 

A simple model inversion controller tracking the desired fan speed is 

implemented to demonstrate the benefits of using the proposed analytical real-time linear 

modeling approach. The model inversion controller using analytical real-time 

linearization is compared with the model inversion controller using a two-point piecewise 

linear model scheduled with N1. The accuracy of a model based controller for the 

traditional piecewise linear model depends on the number of interpolation points and how 

the scheduling is achieved. For simplicity, two point piecewise linear model over 

approximately 10% speed increment is selected here. The reference trajectory of fan 

speed is given by equation (7.1). The derivative of y is taken until the control input 

explicitly appears in the expression. 
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Let y (pseudo control), such that 

)),(()( 1 xuxfu CACCB      

dtyyKyyKy

t

rirpr  
0

)()(   

Then the closed loop system becomes 

dtyyKyyKyy

t

rirpr  
0

)()(  (7.2) 

The model inversion control input for the analytical linear model is given by equation 

(7.3) where  is defined from an arbitrary condition. The model inversion control law for 

the traditional linear model is derived similarly and given by equation (7.4). Here,  is 

defined from the equilibrium operating condition. 
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Let ryye  , then equation (7.2) can be rewritten as  

0
0

  dteKeKe

t

ip
  (7.5) 

Substituting dt
dq

e  ,  
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Error dynamics (7.5) is asymptotically stable for all 0,0,22  ip

x KKeA . 

Therefore, 0e as t .  

The results for the two different model inversion controllers for tracking N1 are 

presented in Figure 7.25. The model inversion controller using the analytical real-time 

linear model tracks the desired trajectory much better than the model inversion controller 

using the piecewise linear model. Results for similar model inversion controllers for 

tracking N2 speed are shown in Figure 7.26. The benefits seen with the use of the 

proposed real time linear model for model based control are expected be greater 

compared to the use of piecewise linear models when the desired trajectory is more 

aggressive and distanced from the steady-state operating condition.  
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Figure 7.25 Model inversion controller for tracking N1 

 

Figure 7.26 Model inversion controller for tracking N2 
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7.3 Summary 

In this chapter, two potential model applications were discussed. The first 

application was developed from the examination of the potential problem of failure to 

achieve the nonlinear values in time for the calculation of the linear coefficients. Holding 

the linear coefficients for multiple time steps is a quick and easy solution and it was 

shown that the analytical linear model was able to achieve the desired level of fidelity 

when the nonlinear convergence issue lasts for a short amount of time. The second 

solution provided potential benefits of using the analytical linear model as an estimation 

model. The estimated model without having nonlinear model could accurately estimate 

the nonlinear model behavior for a long period of time. With the help of a filter, this 

estimation model will be beneficial for many purposes. First, the model can be used for 

model predictive control. Secondly, the model may be used for possible improvement of 

the nonlinear solver. Moreover, the model can be used for estimating parameters for 

health diagnostics. The second application of a simple model inversion control example 

demonstrated the advantage of using the real time linear model over a piecewise linear 

model.  
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CHAPTER 8 

CONCLUSIONS 

 

 

8.1 Summary and Contribution 

 

 Recently, tremendous efforts have been made to improve engine performance 

while ensuring its operational and mechanical limits are met by applying more advanced 

engine control technology. These advanced control techniques are mostly based on model 

based control. While improvement of the control synthesis technique itself can be 

appealing, an alternative path to the enhancement of the engine control system can be 

taken by establishing a more accurate engine model that is the basis for the model based 

control synthesis. The current state of art for engine control system design is based on 

piecewise linear models. Piecewise linear models provide the required accuracy near 

steady-state operation, but model outputs drift away from the true value during large 

transient operation. Moreover, the scheduling of linear models is not a trivial task, 

especially with growth in the complexity of an engine.  

In this thesis, an off-equilibrium linearization methodology was adapted to a jet 

engine model to enhance the performance by providing more accurate transient 

representation of the engine model. The use of off-equilibrium linearization approach 

improved the model accuracy significantly during large transient operation.  

In order to reduce computational effort, analytical linearization was applied, 

enabling linearization in real time. In addition to reduction of computational effort, the 

analytical linearization method provides simpler analysis of the model due to its 
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utilization of analytical algebraic expressions. Moreover, the analytical linearization 

approach provides physical insights to the model, enabling various analyses. This benefit 

alone encourages the use of the analytical linearization method and the analytical 

linearization approach can be used in combination either with off-equilibrium real time 

linearization approach or piecewise linearization approach. 

 The framework for validation of gas turbine linear models was established using 

existing control oriented metrics. The fidelity of the model was measured from different 

perspectives using a number of validation metrics. The validation of the model was 

conducted in both time and frequency domains while covering both open and closed loop 

contexts.  

Some simplifying assumptions were unavoidable to enable analytical partial 

differentiation. In-depth investigations showed that the effect of applying simplifying 

assumptions with regard to gas properties on the fidelity of the model is minimal in 

comparison to the enhancement it offers. Potential model applications were demonstrated 

using a simple model inversion control and an estimation model.  

Further analysis with more complex engine models would be necessary; but 

analysis has proved that the off-equilibrium analytical linear models are an effective way 

to accurately capture engine dynamics. Some control application may not require the 

improvement in engine dynamics while other applications may benefit tremendously. The 

control designer needs to make a full assessment of the problem and complexity before 

selecting the linearization method. 

 The contribution of this thesis can be summarized as following. 

1. Adaptation of off-equilibrium linearization into jet engine for more accurate 

capture of engine dynamics during large transient operation 

2. Development and analysis of methodology of analytical linearization to 

improve physical understanding and provide computationally simple 
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linearization method. This model also provides a platform for various 

analyses. 

3. Adaptation of existing metrics for the validation of the engine linear models 

from the control system perspective (framework of the validation of linear 

models by adapting existing metrics) 

4. Demonstration of potential applications of proposed model using simple 

control and estimation example 

8.2 Conclusions 

 The following conclusions are drawn from the analysis performed on the off-

equilibrium analytical linearization approach. 

 The analytical linearization method causes a minor degradation of fidelity in 

comparison to the numerical perturbation method during steady-state operation 

due to simplifying assumptions. The degradation is bounded by 0.063 for the 

normalized additive uncertainty and 0.027 for the -gap metric. 

 Time domain responses show that the off-equilibrium linearization method tracks 

linear coefficients of non-scheduling parameters of the truth model much better 

than the piecewise linear model. This trend is quantified using the NRMSE. The 

NRMSE of a non-scheduling state of the off-equilibrium linear model is much 

lower than that of the piecewise linear model. On the other hand, the NRMSE of 

the scheduling state of the piecewise linear model is slightly better than the off-

equilibrium linear model. Variation of the NRMSE among the different outputs is 

very small for the analytical off-equilibrium linear model, whereas significantly 

larger variation is observed in the NRMSE of different outputs of the piecewise 

linear model.  
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 The normalized additive uncertainty for the system with outputs of N1 and N2 is 

kept below 0.07 for the off-equilibrium linear model during the Bodie trajectory. 

The normalized additive uncertainty for the piecewise linear model can be as high 

as 0.18 during aggressive transient operation.  

 Significantly larger variation is observed in both the normalized additive 

uncertainty and the -gap metric during the Bodie maneuver in the piecewise 

linear model than the analytical off-equilibrium linear model.  

 The -gap metric for the system with an output of N1 shows similarity between 

the piecewise linear model and the off-equilibrium linear model. The -gap metric 

of the piecewise linear model is about twice that of the off-equilibrium linear 

model at its highest. The -gap metric for the system with an output of N2 shows 

significantly larger improvement using the analytical off-equilibrium linear 

models. The improvement using the off-equilibrium linearization is more than 

quadruple for the system with an output of N2. It is concluded that the 

improvement of using off-equilibrium linear model is more significant for a non-

scheduling output. The conventional piecewise linear model is adequate for the 

system with an output of scheduling parameter.  

 The off-equilibrium analytical linear model exhibits similar magnitude of the -

gap metric for different outputs when scaled using the DC gains. The system with 

an output of HPT outlet temperature has the highest -gap metric, suggesting that 

HPT outlet temperature may not be an appropriate design parameter when using 

the proposed analytical linearized models.  

 The effect of the flow solver tolerance on the fidelity of the analytical 

linearization scheme is found to be negligible. 



www.manaraa.com

174 

 

 Both additive uncertainty and the -gap metric for the system with an output of N2 

is an order of magnitude larger when the enthalpy change and torque change due 

to bleed portion is neglected. This proves that the bleed flow is an important 

contributor to linear coefficients and cannot be neglected entirely.   

 The assumption of constant gas properties within one component during one time 

step has minor effects on model fidelity as shown by component model level and 

integrated model level validations. Effects of this assumption are larger for a 

component with higher temperature variation such as HPT, but still within 5% 

during the Bodie trajectory. This is the cost of achieving the proper analytical 

linearization. This cost may be decreased using a polynomial representation of gas 

properties at the expense of computational complexity.  

 The combustor is better approximated using the constant cp, which is different at 

inlet and outlet, than using an average cp for calculating linear coefficients. The 

improvement using cp, which is different at inlet and outlet, is an order of 

magnitude for both normalized additive uncertainty and the -gap metric.  

 Holding off-equilibrium linear coefficients for a few time steps in case of a failure 

to achieve nonlinear model convergence does not result in a significant loss of the 

analytical linear model fidelity. The off-equilibrium analytical linear model 

exhibits higher model fidelity than the piecewise linear model up to loss of flow 

solver convergence for 5 successive time steps of 0.05s each.   

8.3 Recommendations for Future Work 

This thesis lays out a strong basis for potential development of many useful 

applications. Also, some modifications can be made to enhance the analytical 

linearization approach. The following selective applications of the model are suggested 

for future work.  
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1. Study of parametric uncertainty of selected variables  

The analytical linear model is a powerful tool for analysis of the effect of 

parametric uncertainty in selected parameters on the system level linear model. 

Uncertainty can be represented in terms of a bounded fraction of actual value. For 

example, uncertainty in T4 can be implemented by replacing T4 with (1+lp)T4 in all 

algebraic expressions for computing linear coefficients where lp is a fraction of 

known upper bound of the uncertainty. Different ranges of upper bounds can be 

examined. The difference between the model with different levels of parametric 

uncertainties and the model without parametric uncertainty can be captured using 

validation tools described in this thesis. A parameter which has more weight on 

system level dynamic model uncertainty can be determined by using this uncertainty 

model. Furthermore, the effect of changing certain engine parameters on the linear 

coefficients can be studied using analytical expressions. The analysis can be done at 

the steady-state operation as well as during transient operation 

2. Development of stand-alone linear model by applying filter 

The estimation model that was briefly discussed in chapter 7 can be enhanced by 

applying periodic correction using actual measurements. This may enable the 

potential linear estimation model along the trajectory without running a nonlinear 

model onboard or with only minimum nonlinear model involvement. This would 

increase computational speed as well as eliminate flow solver convergence issues. In 

addition, approximating thermodynamic properties in terms of simple algebraic 

expression (replacing thermodynamic table with simple algebraic expressions) would 

speed up the estimation process. Furthermore, the analytical linear model can run 

parallel with the nonlinear model by providing initial solver guesses to help 

convergence of the nonlinear model. 

3. Control synthesis problem for off-equilibrium linearization 
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This thesis only briefly described the control applications. Detailed study on the 

controller synthesis using the off-equilibrium linear model is desirable as it involves 

non-conventional definition of the states.  

The following offers suggestions to improve the current linearization approach. 

4. Enhancement of map representations 

The sensitivities with respect to the compressor and turbine maps were calculated 

using the numerical perturbation method in this thesis. Replacing the tabular form of 

map with a functional representation, such as a neural network or state vector 

machine, can enhance the model by providing computational flexibility and 

eliminating discontinuity caused by the maps.  

5. Increasing complexity of nonlinear model 

An analytical off-equilibrium linearization method can be applied to a more 

complex engine model with more inputs and states. The advantage of this approach is 

that it can be applied to any type of gas turbine engine with minor modifications. 

6. Development of model in corrected domain 

The analytical off-equilibrium linear engine model was developed for dynamic 

states of uncorrected shaft speeds. The linear model can be simplified using the 

corrected domain using ambient condition at the engine’s inlet[62].  
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APPENDIX A 

EXAMPLE OF SYSTEM MATRIX 

 

Figure A 1 Example of matrix K for twin-spool turbofan 



www.manaraa.com

178 

 

 

































































































































































00000000000000000000000

00000000000000000000000

00000000000000000000000

00000000000000000000000

00000000000000000000000

0000000000000000000000

00000000000000000000

000000000000000000000000

0000000000000000000000

00000000000000000000000

12

10

12

10

12

9

12

9

12

1

12

1

50

8

50

8

50

7

50

7

50

6

50

6

45

6

45

5

45

5

40

5

40

5

30

5

30

4

30

3

25

3

25

3

25

2

25

2

tt

tt

t

tt

tt

tt

ttt

tt

t

P

k

T

k

P

k

T

k

T

k

w

k

P

k

T

k

P

k

T

k

T

k

w

k

T

k

T

k

w

k

T

k

w

k

T

k

w

k

T

k

T

k

w

k

T

k

w

k

E

 

 



www.manaraa.com

179 

 



































































































































































































































































































































































































































































































































































0000001010

0010010001

00

00

0

00

00

0

0

00

0

0

,

0

0

0

0

0

0

0

0

0

,

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

,

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

,

00

00

00

00

00

00

0

0

0

00

0

0

0

0

0

0

00

00

00

0

0

0

0

0

0

1

1

1

6

2

5

2

3

1

2

4

20

3

20

3

20

2

20

2

20

1

20

1

20

3

20

3

20

2

20

2

20

1

20

1

2

1

1

3

1

2

1

1

1

3

1

2

1

1

2

3

2

2

2

1

2

3

2

2

2

1

1

3

1

2

1

1

P

GFRLM

N

k

N

k

N

k

N

k

N

k

w

k

P

a

T

a

P

a

T

a

P

a

T

a

P

e

T

e

P

e

T

e

P

e

T

e

w

g

w

g

N

a

N

a

N

a

N

m

N

m

N

m

N

f

N

f

N

f

N

h

N

h

N

h

N

e

N

e

N

e

f

tt

tt

tt

tt

tt

tt

f

f



www.manaraa.com

180 

 

REFERENCES 

 

[1] Ananthkrishnan, N., 2004, “Small-Perturbation Analysis of Airplane Flight 

Dynamics – A Reappraisal. I: Longitudinal Modes,” AIAA Atmospheric Flight 

Mechanics Conference 2004, AIAA, Providence, RI, pp. 643–659. 

[2] Aström, K. J., and Murray, R. M., 2008, Feedback Systems: An Introduction for 

Scientists and Engineers, Princeton University Press. 

[3] Ballin, M. G., 1988, “A High Fidelity Real-time Simulation of a Small Turboshaft 

Engine,”, NASA TM-100991, NASA. 

[4] Brunell, B. J., Viassolo, D. E., and Prasanth, R., 2004, “Model Adaptation and 

Nonlinear Model Predictive Control of an Aircraft Engine,” Proceedings of the 

ASME Turbo Expo 2004, ASME, Atlanta, pp.673. 

[5] Camporeale, S. M., Fortunato, B., and Mastrovito, M., 2006, “A modular code for 

real time dynamic simulation of gas turbines in simulink,” Journal of Engineering 

for Gas Turbines and Power, 128(3), pp. 506–517. 

[6] Chung, G.-Y., Dhingra, M., Prasad, J. V. R., Meisner, R., and Sirica, S., 2011, “An 

Analytical Approach to Gas Turbine Engine Model Linearization,” Proceedings of 

the ASME Turbo Expo 2011, AMSE, Vancouver, Canada, pp. 105–115. 

[7] Chung, G.-Y., Prasad, J. V. R., Dhingra, M., and Meisner, Richard, “Real time 

analytical linearization of turbofan engine model,” Proceedings of the ASME Turbo 

Expo 2013, ASME, San Antonio, TX. 

[8] Csank, J., May, R. D., Litt, J. S., and Guo, T.-H., 2010, “Control Design for a 

Generic Commercial Aircraft Engine,” 46th AIAA/ASME/SAE/ASEE Joint 

Propulsion Conference & Exhibit, AIAA, Nashville. 

[9] Culley, D et al, 2009, “More Intelligent Gas Turbine Engines (Des turbomoteurs 

plus intelligents),”,TR-AVT-128, RTO Technical report. 

[10] Cumpsty, N., 2003, Jet Propulsion: A Simple Guide to the Aerodynamic and 

Thermodynamic Design and Performance of Jet Engines, Cambridge University 

Press. 

[11] Curry, T., and Behbahani, A., 2004, “Propulsion Directorate/Control and Engine 

Health Management(CEHM): Real-Time Turbofan Engine Simulation,” 2004 IEEE 

Aerospace Conference Proceedings, IEEE, Piscataway, NJ, USA, pp. 3414–23. 



www.manaraa.com

181 

 

[12] DeCastro, J. A., 2007, “Rate-Based Model Predictive Control of Turbofan Engine 

Clearance,” Journal of Propulsion and Power, 23(4), pp. 804–813. 

[13] DeCastro, J. A., Litt, J. S., and Frederick, D. K., 2008, “A modular aero-propulsion 

system simulation of a large commercial aircraft engine,” 44th 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 21, 2008 - 

July 23, 2008, American Institute of Aeronautics and Astronautics Inc., Hartford, 

CT, United states. 

[14] Edmunds, D. B., 1977, “Multivariable Control for a Variable Area Turbine Engine,” 

ASD-TR-77-59, Air Force. 

[15] El-Sakkary, A., 1985, “The gap metric: Robustness of stabilization of feedback 

systems,” IEEE Transactions on Automatic Control, 30(3), pp. 240– 247. 

[16] Flack, R. D., 2010, Fundamentals of Jet Propulsion with Applications, Cambridge 

University Press. 

[17] Frederick, D. K., DeCastro, J. A., and Litt, J. S., 2007, “User’s Guide for the 

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS),” 

NASA/TM-2007-215026, NASA. 

[18] Ghorbanian, K., and Gholamrezaei, M., 2009, “An artificial neural network 

approach to compressor performance prediction,” Applied Energy, 86(7-8), pp. 

1210–21. 

[19] James, M. R., Smith, M. C., and Vinnicombe, G., 2005, “Gap Metrics, 

Representations, and Nonlinear Robust Stability,” SIAM Journal on Control and 

Optimization, 43(5), p. 1535. 

[20] Jaw, L. C., 2009, Aircraft engine controls : design, system analysis, and health 

monitoring, AIAA, Reston. 

[21] Jaw, L. C., and Garg S., 2005, “Propulsion Control Technology Development in the 

United States A Historical Perspective,” NASA/TM-2005-213978, NASA. 

[22] Johansen, T. A., Hunt, K. J., Gawthrop, P. J., and Fritz, H., 1998, “Off-equilibrium 

linearisation and design of gain-scheduled control with application to vehicle speed 

control,” Control Engineering Practice, 6(2), pp. 167–80. 

[23] Jones, Scott M., “An Introduction to Thermodynamic Performance Analysis of 

Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System 

Simulation Code,” NASA/TM-2007-214690, NASA. 



www.manaraa.com

182 

 

[24] Kim, S., Ellis, S., and Challener, M., 2006, “Real-Time Engine Modelling of a 

Three Shafts Turbofan Engine: From Sub-Idle To Max Power Rate,” Proceedings of 

the ASME Turbo Expo 2006, ASME,  Barcelona, Spain, pp. 699–705. 

[25] Kulikov, G. G., and Thompson, H. A., 2004, Dynamic modelling of gas turbines: 

identification, simulation, condition monitoring, and optimal control, Springer, 

London.G.G.  

[26] Kumar, A., and Viassolo, D., 2008, “Model-Based Fault Tolerant Control,” 

NASA/CR-2008-215273, NASA. 

[27] Leith, D. J., and Leithead, W. E., 1998, “Gain-scheduled and nonlinear systems: 

Dynamic analysis by velocity-based linearization families,” International Journal of 

Control, 70(2), pp. 289–317. 

[28] Lichtsinder, M., and Levy, Y., 2006, “Jet engine model for control and real-time 

simulations,” Journal of Engineering for Gas Turbines and Power, 128(4), pp. 745–

753. 

[29] Lietzau, K., and Kreiner, A., 2004, “The Use of Onboard Real-Time Models for Jet 

Engine Control,” MTU Aero Engine, Germany. 

[30] Litt, J. S., Simon, D. L., Garg, S., Guo, T.-H., Mercer, C., Millar, R., Behbahani, A., 

Bajwa, A., and Jensen, D. T., 2004, “A survey of intelligent control and health 

management technologies for aircraft propulsion systems,” Journal of Aerospace 

Computing, Information and Communication, (DEC.), pp. 543–563. 

[31] Lytle, J. K., “Numerical Propulsion System Simulation: An Overview,” CAS 2000 

Workshop/The Ames Research Center, February, 15, p. 2000. 

[32] Maciejowski, J., 2000, Predictive Control with Constraints, Prentice Hall. 

[33] Maciejowski, J. M., 1989, Multivariable feedback design, Addison-Wesley. 

[34] Mahmood, S., Griffin, I. A., Fleming, P. J., and Shutler, A. J., 2005, “Inverse Model 

Control of a Three Spool Gas Turbine Engine,” Proceedings of the ASME Turbo 

Expo 2005, ASME, Reno-Tahoe, NV, pp. 731–736. 

[35] Martin, S., Wallace, I., and Bates, D. G., 2008, “Development and validation of a 

civil aircraft engine simulation model for advanced controller design,” Journal of 

Engineering for Gas Turbines and Power, 130(5). 

[36] Mattingly, J. D., 1996, Elements of gas turbine propulsion, McGraw-Hill. 



www.manaraa.com

183 

 

[37] Mattingly, J. D., Heiser, W. H., and Pratt, D. T., 2002, Aircraft Engine Design, 

Second Edition, AIAA, Reston. 

[38] McFarlane, D., and Glover, K., 1992, “A loop-shaping design procedure using H∞ 

synthesis,” IEEE Transactions on Automatic Control, 37(6), pp. 759–769. 

[39] Merrill, W., Lehtinen, B., and Zeller, J., 1984, “The role of modern control theory in 

the design of controls for aircraft turbine engines,” Journal of Guidance, Control, 

and Dynamics, 7(6), pp. 652–61. 

[40] Murray-smith, R., Johansen, T. A., and Shorten, R., 1999, “On Transient Dynamics, 

Off-Equilibrium Behaviour and Identification in Blended Multiple Model 

Structures,” In European Control Conference, p. 14. 

[41] NATO RESEARCH AND TECHNOLOGY ORGANIZATION NEUILLY-SUR-

SEINE (FRANCE), “Performance Prediction and Simulation of Gas Turbine Engine 

Operation for Aircraft, Marine, Vehicular, and Power Generation,” 2007. 

[42] Pakmehr, M., Fitzgerald, N., Feron, E., Shamma, J., and Behbahani, A., “Gain 

Scheduling Control of Gas Turbine Engines: Absolute Stability by Computing a 

Single Lyapunov Function,” in: ASME Conference Proceedings, San Antonio, TX, 

USA, 2013. 

[43] Qi, O. F., Gawthrop, P. J., and Maccallum, N. R. L., 1992, “Model-Based Observer: 

A Gas Turbine Engine Case Study,” First IEEE Conference on, New York, pp. 877–

82. 

[44] Rahman, N. U., and Whidborne, J. F., 2009, “Real-time transient three spool 

turbofan engine simulation: A hybrid approach,” Journal of Engineering for Gas 

Turbines and Power, 131(5), pp. 1–8. 

[45] Rezvani, R., Ozcan, M., Kestner, B., Tai, J, Marvis, D.N, Meisner, R., and Sirica, S., 

2011, “A Gas Turbine Engine Model of Transient Operation Across the Flight 

Envelope,” Proceedings of ASME Turbo Expo 2011, ASME, Vancouver, Canada. 

[46] Richter, H., Singaraju, A., and Litt, J. S., 2008, “Multiplexed predictive control of a 

large commercial turbofan engine,” Journal of Guidance, Control, and Dynamics, 

31(2), pp. 273–81. 

[47] Sanghi, V., Lakshmanan, B. K., and Rajasekaran, R., 2001, “Aerothermal model for 

real-time digital simulation of a mixed-flow turbofan engine,” Journal of Propulsion 

and Power, 17(3), pp. 629–635. 

[48] Seldner, K., Cwynar, D. S.,1978, “Procedures for generation and reduction of linear 

models of a turbofan engine,” NASA Technical Report 1261, NASA, Washington. 



www.manaraa.com

184 

 

[49] Sellers, J. F., and Daniele, C. J., 1975, “DYNGEN - A Program for Calculating 

Steady-State and Transient Performance of Turbojet and Turbofan Engines,” SNAS 

TN D-7901, NASA. 

[50] Shankar, P., and Yedavalli, R. K., 2009, “Neural-network-based observer for turbine 

engine parameter estimation,” Proceedings of the Institution of Mechanical 

Engineers, Part I: Journal of Systems and Control Engineering, 223(6), pp. 821–832. 

[51] Spang, III A., and Brown, H., 1999, “Control of jet engines,” Control Engineering 

Practice, 7(9), pp. 1043–1059. 

[52] Steele, J., and Vinnicombe, G., “The ν-Gap Metric and the Generalised Stability 

Margin,” Advanced Techniques for Clearance of Flight Control Laws, C. Fielding, 

A. Varga, S. Bennani, and M. Selier, eds., Springer Berlin Heidelberg, Berlin, 

Heidelberg, pp. 57–75. 

[53] Sugiyama, N., 1994, “Derivation of system matrices from nonlinear dynamic 

simulation of jet engines,” Journal of Guidance, Control, and Dynamics, 17(6), pp. 

1320–1326. 

[54] Tagashira, T., Mizuno, T., Koh, M., and Sugiyama, N., 2009, “ATF Test Evaluation 

Of Model Based Control For a Single Spool Turbojet Engine,” Proceedings of the 

ASME Turbo Expo 2009, ASME, Orlando, FL, United states, pp. 673–685. 

[55] Turevskiy, A., Meisner, R., Luppold, R. H., Kern, R. A., and Fuller, J. W., 2002, “A 

Model-Based Controller for Commercial Aero Gas Turbines,” Proceedings of the 

ASME Turbo Expo 2002, ASME, Amsterdam, The Netherlands,  pp. 189–195. 

[56] van Essen, H. A., 1998, “Modelling and model based control of turbomachinery,” 

Technische Universiteit Eindhoven, Eindhoven. 

[57] van Essen, H. A., and De Lange, H. C., 2001, “Nonlinear Model Predictive Control 

Experiments on a Laboratory Gas Turbine Installation,” J. Eng. Gas Turbines Power, 

123(2), pp. 347–352. 

[58] Venturini, M., 2006, “Simulation of compressor transient behavior through recurrent 

neural network models,” Journal of Turbomachinery, 128(3), pp. 444–454. 

[59] Vinnicombe, G., 1992, “Measuring robustness of feedback systems”, University of 

Cambridge. 

[60] Vinnicombe, G., 2001, Uncertainty and Feedback: H [infinity] Loop-shaping and 

the [nu]-gap Metric, World Scientific. 



www.manaraa.com

185 

 

[61] Volponi, A., 2008, “Enhanced Self Tuning On-Board Real-Time Model (eSTORM) 

For Aircraft Engine Performance Health Tracking,” NASA/CR-2008-215272, 

NASA. 

[62] Volponi, A. J., 1999, “Gas Turbine Parameter Corrections,” J. Eng. Gas Turbines 

Power, 121(4), pp. 613–621. 

[63] Walsh, P. P., and Fletcher, P., 2004, Gas Turbine Performance, Second Edition, John 

Wiley & Sons. 

[64] Zhou, K., and Doyle, J. C., 1997, Essentials of Robust Control, Prentice Hall. 

[65] Zhou, K., Doyle, J. C., and Glover, K., 1995, Robust and Optimal Control, Prentice 

Hall. 

[66] 2006, “NPSS User Guide,” NPSS-User, NASA. 

 

 


